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DIFFERENTIAL GEOMETRY APPROACH  
IN OPTIMIZATION OF THE BUSINESS 

PRODUCTION PROCESS  
 
Abstract 
In this work we show a new approach to the optimization of the production 
process - from a differential geometry point of view. It is known  
([2]) analytical conditions of profit maximization and minimization of the cost 
in an enterprise. In the first part of this work, we show such a classical 
approach. In the second part of the work, we use geometrical methods  
to obtain a new geometrical approach to the production process. 
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1. Production process optimization 

Let consider the long-term optimization issues of the business 
production process. The company wants to maximize profits or minimize 
production costs. Our purpose in this section is to find the answer to the 
question – which conditions should be filled? 
 

1.1. Production function 

We will denote by 1( ,..., )nx x x  n - dimensional vector of inputs, where 

0ix   for 1,..., ,i n  by 1( ,..., )ny y y   n - dimensional vector of products, 

where 0iy   for 1,...,i n , nN . By the production process  
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we understand such set of activities as a result of which a given bundle  
of inputs is transformed into a specific bundle of products. The production 
process is described by not negative, 2n - dimensional vector ( , ) 0x y  ,  

in which x  is n - dimensional vector of inputs needed to produce  
n - dimensional vector of products y , nN . Vectors x  and y  form  

a technologically acceptable production process. A set 2nZ  R  of all 
technologically acceptable production processes with the norm defined  
by the formula: 
 

 1 1max ,..., , ,...,  for n nz x x y y z Z 
 

 

we call  p – production space.  
The production process (�, �) ∈ � we call technologically effective,  

if there is not exists another production process (�, �′) ∈ � such that �� > �. 
([1], s. 74) 

With the technologically effective production process a vector – valued 
production function is associated. We define it in the following way: 
 

Definition 1. If there exists a vector – valued function �: ��
� → ��

� ,  
such that � = �(�), if and only if the production process (�, �) ∈ �  
is technologically effective, then the function f is called vector – valued 
production function associated with p – production space Z.  
We will be concerned only with the case of production process in which 
manufacturer produce only one product using to this k inputs, � ≤ �.  
In such situation vector – valued production function defined above reduces 
to the inner, k - arguments production function �: ��

� → �, � ≤ �, which 
is associated with the p – production space � ⊂ ����. It is a function which 
maps each not negative vector of inputs � = (��, . . . , ��) to such result  
of production  � = �(�), that the pair  (�, �) makes technologically effective 
production process.  
We will make the following assumptions about the inner, k - arguments 
production function �: ��

� → �: 
(F1)  f is continue and second order differentiable on the interior  

of its domain int ��
� ; 

(F2)  �(0, . . . ,0) = 0 – zero vector of inputs give zero production result; 
(F3)  f is increasing function on int ��

� , i.e. each any small increase  
of inputs induces production increase;  
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(F4)  f is concave function on int ��
� , i.e.  

∀��, �� ∈ ��
�, ∀�, � ≥ 0, � + � = 1: (�(��� + ���) ≥ ��(��) + ��(��)), 

that is �
���

����
�×�

 is not positive matrix on ��
� ; 

(F5)  function f is positive homogenous of rank � > 0, i.e. 
 ∀� ∈ ��

�, ∀� ≥ 0: (�(��) = ���(�)). 
 
 

1.2. Profit maximization problem 
In this section, we will be concerned with the problem of profit 

maximization in the enterprise. Suppose a company operates in the long 
run (long–term strategy). This postulate implies that it has unlimited 
freedom to determine the size and structure of the factors of production 
involved. 

Let � = (��, . . . , ��) be inputs vector of productive factors expressed  
in physical units, where each productive factor satisfies the condition �� ≥ 0 
for � = 1, . . . , �. Let further � = (��, . . . , ��) be cost vector of productive 
factors. We will denote by 〈w, x〉 the inner product of vectors x and w: 

 
k

i i 1 1
i 1

, ... .k kw x w x w x w xw x


    
 

 

Let us consider the function �: ��
� → �� satisfying the conditions  

(F1)-(F5). We will denote by �(�) quantity of fabricated product (in physical 
units), by p – the price of this product. 

Define profit function �: ��
� → �� of the company by the formula: 

 
�(�) = ��(�) − 〈w, x〉,    (1) 

 
where ��(�) is product sale income, 〈w, x〉  denotes the cost  

of manufactured product. 
Aur purpose is to maximize the company’s profit when the production 

process is described by inner, k - arguments production function �: ��
� → � 

determined in the definition 1. We are looking for such a vector of inputs  
of production factors �∗ ≥ 0, for which profit function Z of the company, 
given by formula (1), riches its maximum. 

A necessary and sufficient condition for the existence of an optimal 
solution � = �∗ is given by the following theorem: 
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Theorem 1. Let �: ��
� → �� be inner, k - arguments production function 

satisfying the conditions (F1)-(F5). Let further the product price p>0 and the 
production factor price vector w>0 satisfy the condition 

 

lim
�→�

 �
��(�)

��
< � < �

��(�)

��
�

���
. 

 
Then the optimal solution to the problem of maximizing company’s profit 

is the positive input vector of production factors �∗ > 0, and a necessary 
and sufficient condition for the existence of an optimal solution is  
 

�
��(�)

��
�

���∗
= �, 

 
or otherwise 
 

��(�)

��
�

���∗
= 0 

 
(see [1]). 
 
Remark 1. The assumption of a strong concavity of the production function 
f does not guarantee the existence of an optimal solution to the problem  
of maximizing the company’s profit. For if the production factor price vector 
satisfies the system of inequalities: 

��(�)

��
�

���∗
≤ 0, 

then the optimal solution to our task is the zero input vector �∗ = 0. On the 
other hand, when the system of inequalities is satisfied 
 

 0 ≤ lim
�→�

��(�)

��
�

���∗
, 

 
the problem of maximizing the company’s profit does not have a finite 
optimal solution. 
 

1.3. Problem of minimizing production costs 
Let �: ��

� → �� be linear function of enterprise costs given by the formula 
 

�(�) = 〈w, x〉 = � ∘ � = ����+. . . +����,  (2) 
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where � = (��, . . . , ��) is the input vector of the factors of production of the 
enterprise, � = (��, . . . , ��) is the production factor price vector. We are 
interested in minimizing production costs. Approaching the problem 
analytically we want to determine the minimum of the cost function K with 
the existing constraints: 
 

�(�) = y=const.>0,    (3) 
� ≥ 0, 

 
where y=const.>0 is fixed production level, f is production function. 
The condition for the existence of a minimum of the cost function  

K under constraints (3) is given by the following Theorem: 
Theorem 2. Vector �∗ > 0 is the optimal solution for the task  

of minimizing the costs of the company if and only if there exists a constant 
�∗ > 0 such that the pair (�∗, �∗) satisfies the system of equations: 

 
��(�)

���
�

���∗

= �∗��, �ℎ���  � = 1, … , �. 

 
The above Theorem implies that cost minimization of the company takes 

place when the marginal productivity of i – the factor of production  

 ��, expressed in the form of partial derivative  
��(�)

���
 of production function  

f, is proportional to the price �� of this factor. 
 

2. Geometrical aspects of function extremes 
Our starting point are Sikorski differential spaces [4, 5, 6], which are 

subsets of Cartesian space �� and differential manifolds, that is topological 
spaces locally homeomorphic to open subsets of  ��. On such spaces we 
will develop the theory of geometrization of production process of the 
enterprise. 

Sikorski differential space (Sikorski, 1972) is a ringed space (�, �), 
where � is set of points and � is differential structure on M, i.e. a set  
of real valued functions on �, �: � → � satisfying the following conditions: 

1. � is closed with respect to localization, �� = �, where �� is the set  
of all local � - functions in the weakest topology �� in which  
all functionf from � are continous;  

2. � is closed with respect to superpositions with smooth functions, 
sc� = �, where  
 

sc� ≔ {� ∘ (��, … , ��): � ∈ �, � ∈ ��(��), ��, … , �� ∈ �}. 
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A mapping �: (�, �) → (�, �) is smooth, if for any function � ∈ �,  
 

� ∘ � ∈ �, 
 

where (�, �) and (�, �) are Sikorski differential spaces. 
Functions belonging to a differential structure � are by definition smooth 

(�� class) on �.  
Differential manifolds of dimension n we call Hausdorff space � locally 

homeomorphic with ��, i.e. for any point � ∈ � there exists surrounding  
� ∋ � and homeomorphism �: � → �(�) on the open subset of ��. 

For any point  � ∈ �, where M is differential space or differential 
manifold, by ��� we will denote the set of all vectors tangent to M  

at a point p. We say that any mapping �: � → � is vector tangent  
to M if v is R – linear and satisfies the Leibniz rule: 

 
( ) ( ) ( ) ( ) ( )  for  , .v f g v f g p f p v g f g C                         (4) 

 

2.1. The problem of the extreme on a differential manifold 
Let M be a differential manifold, ��(�) – let be an algebra of all smooth 

functions (i.e. functions having derivatives of any order, that are continuous 
functions) on M. Let’s take a function � ∈ ��(�),  �: � → � and a point  
� ∈ �. By the symbol (��)� we will denote the differential of function  

� at a point � ∈ �: 
 

(��)�: ��� → �, 

 
which is given by the formula: 
 

(��)�(�) = �(�), 

 
where � ∈ ��� is a vector tangent to differentiable manifold M at a point 

p, i.e. R – linear mapping which satisfies the Leibniz rule in formula (4). 
Tangent vectors and differentials are related to a certain map.  

A collection of maps is called an atlas. Let � = (��, . . . , ��) be a map  
in a surrounding of a point � ∈ � and ��, . . . , �� let be coordinates of this 
map. Then the following equalities are true: 

 
�

����
�

∈ ��� for � = 1, . . . , � 

 
And 
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�

���
�

�
(�) = (� ∘ ���)�

�(�(�)) = ��(� ∘ ���)(�(�)) =
��

���
(�) =

��

���
�

�
. 

 
The differentials (���)�

�
 are basis covectors for ni ,...,1 . Any 

differential of a function f a point p can be expressed by basis covectors: 
 

(��)� = �
�

���

�

���
�

�

⋅ (���)�
�

.    (5) 

 

The coordinates 
�

����
�

, . . . ,
�

����
�
 form a gradient of a function f at a point  

p, i.e. vector of partial derivatives of function f at a point p: 
 

grad �� = (
�

����
�

, . . . ,
�

����
�

). 

 
Theorem 3. If a function � ∈ ��(�) reaches an extreme at a point � ∈

�, then 
 

(��)� = 0,     (6) 

 
 

i.e. the differential of a function  f disappears at that point.  
Proof: Let’s take the manifold   � = ��, on which the atlas  

in a surrounding of a point  � ∈ �� is in the form of single map  
� = (��, . . . , ��) = id��. Let �: �� → � be a smooth function  
on ��, i.e. � ∈ ��(��). If a function f possesses a local extreme at a point 
p, then it is well known that the necessary condition for the existence  
of an extremum of a function f at a point p is that the partial derivatives  
of a function f at this point are equal to zero: 

 
��

���
(�) = 0, � = 1, . . . , �.    (7) 

 
The condition (7) implies  
 

�
�

���

�

���
�

�

⋅ (���)�
�

= 0,   (8) 

 
 

From the formulas (8) and (5) we obtain  
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(��)� = 0. 

 
We have proved that the Theorem 3 is true for the manifold being  

a Cartesian space  � = ��. 
Now let’s consider the case where � is any differential manifold.  

Let �: � → � be smooth function on �, � ∈ ��(�). If  � = (��, . . . , ��)  
is a map on �, then � ∘ ��� is smooth function on the open submanifold 
(�(�), �id�(�)�). From this fact we obtain that  

 
��(� ∘ ���)��(�)� = 0  for  � = 1, . . . , �.   (9) 

 
The condition (9) is equivalent to the fact that for = 1, . . . , � : 
 

�

����
�

(�) = 0.             (10) 

 
From the equality (10) finally we have:  
 

(��)� = 0, 

 
which means that the differential of the function f at a point p disappears.  ■ 

Corollary 1. The vanishing of the differential of the function  
f at a point � ∈ � means the perpendicularity of the gradient of the function 
f at a point � ∈ � to the manifold  � on the Cartesian space ��, and thus 
the perpendicularity of the gradient to the tangent vector  � ∈ ���, what 

can be expressed: 
 

(grad �) (�) ⊥ �.    (11) 
 

In other words, the formula (11) means that the scalar product of 
gradient of the function f at a point � ∈ � and tangent vector � ∈ ��� is 

equal to zero: 
 

(grad �) (�) ∘ � = 0. 
 

2.2. Maximization the company’s profit in geometric terms 
Let � = (��, . . . , ��) be an input vector of the factors of production of the 

enterprise, � = (��, . . . , ��) let be a vector of factor prices.  Let �: ��
� → �� 

be the production function which satisfies the assumptions (F1)-(F5). 
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Our aim is to find a geometric condition for a company to maximize its 
profit. The Theorem 1 gives the condition which must be fulfilled for the 
profit function Z defined by the formula (1) to reach a maximum. However, 
this theorem is formulated in the language of mathematical analysis.  
Our task is to solve the profit maximization problem in the language  
of differential geometry. This is described by the following theorem: 

Theorem 4. If �: ��
� → �� is inner, k – arguments production function, 

continuous, twice differentiable and strongly concave, �: ��
� → �� is inner,  

k – arguments profit function  given by (1), that is continuous, twice 
differentiable and strongly concave, p is a price of a product, p>0,  
� = (��, . . . , ��) is positive vector of factor prices, then the optimal solution 
of the task of profit maximization of a company is positive input vector  
of the factors of production  �∗ > 0, and the necessary and sufficient 
condition of the existence of optimal solution is that the gradient of the 
function f is parallel to the vector of factor prices:  

 
grad � ‖�. 

 
The condition of parallelism of the gradient of the production function  

to the vector of factor prices also means that the gradient of the profit 
function Z is zero:  

 
grad � = 0, 

 
which follows directly from the form of the profit function (1). The profit 

function Z is strongly concave (because the production function f is strongly 
concave and the costs function 〈�, �〉 is strongly concave). Therefore,  
the profit function Z has exactly one global maximum at a point �∗ > 0.  

 
2.2.1. Minimization of production costs of a company in geometric 

terms 
The theorem 2 gives an analytical condition for minimizing costs  

in the enterprise.  
We now turn on to the formulation of an analogous condition in the 

language of differential geometry.  
Let �: ��

� → �� be linear function of enterprise costs given by the 
formula (2). We want to find the minimum of the function K defined  

on a differential space �, which is subspace of Cartesian space, 
kM  R
 

and is given by constraint:  
 

�: �(�) = � = const. > 0,   (12) 
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where � ≥ 0 is not negative input vector, y=const.>0 is fixed production 
level and f is production function. 

The following theorem gives geometric condition for minimizing the 
company’s production costs under constraint (12):  

Theorem 5. The cost function K given by the formula (2) has a minimum 
at point � = � ≥ 0 on differential space � defined by condition (12), if the 
gradient of f is perpendicular to the tangent vector v at point p, i.e.: 

 

grad   for  ,pf v v T M   

 
where ��� is space tangent to differential space � at point p M .  

Proof: Differential space given by condition (12) can be expressed as:  
 

).(1 yfM   
 

From the condition (12) we know that f is constant function, so the 
gradient of this function is zero vector:  
 

grad f=0. 
 

From the above also differential of gradient of function f is equal to zero: 
 

d (grad f) = 0 
 

and differential of function f at point � ∈ � is equal to zero:  
 

��� = 0. 

 
From the above we obtain that the value of the differential of function  

f at point � ∈ � at vector v tangent to M is also the zero: 
 

�����(�) = 0  dla  � ∈ ���,  

 
what can be expressed as follows: 
 

� (
��

���
�

�
⋅ ���|�)(�) = 0.

�

���

   (13) 
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On the other hand, we have: 
 

(���|�)(�) = �(��), 

 
So, from equation (13) we get:  
 

�
��

���
�

�
⋅ �(��) = 0.

�

���

    (14) 

 
 

Equation (13) denotes that the inner product of the vector of partial 
derivatives of the function f at point p (i.e. the gradient of the function  
f at point p) and the vector tangent to the differential space � at point  
p is zero: 

 

(
��

���
�

�

, . . . ,
��

���
�

�

) ∘ (��, . . . , ��) = (grad f ) ,0)( vp   

 
which is equivalent to the fact that the gradient of the function f at point p is 
perpendicular to the vector tangent to M at this point: 
 

grad f ⊥ �   for   � ∈ ���.  ■ 

 
3. Conclusions 

The considerations in the paper show that the production function theory 
can be presented in the language of differential geometry. Moreover,  
it turns out that the geometric approach simplifies the proofs of profit 
maximization and costs minimization theorems. Replacing analitical 
concepts with geoemetric ones makes that it is possible to prove the 
conditions sufficient for existence of the extremum of the production 
function in a simple and brief way. 
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