
Equilibrium. Quarterly Journal of Economics and Economic Policy 
Volume 15 Issue 2 June 2020 
p-ISSN 1689-765X, e-ISSN 2353-3293 
www.economic-policy.pl                                               
 

ORIGINAL ARTICLE  
 
Citation:  Hanias, M., Tsakonas, S., Magafas, L., & Thalassinos, E. I., & Zachilas, L. (2020). 
Deterministic chaos and forecasting in Amazon’s share prices. Equilibrium. Quarterly Journal of 
Economics and Economic Policy, 15(2), 253–273. doi: 10.24136/eq.2020.012 
 
Contact to corresponding author: stef1920@hotmail.gr; Department of Economics, University of 
Thessaly, 28hs Octovriou 78, Volos, P.C. 38333, Greece 
Received: 28.02.2020; Revised:  4.04.2020; Accepted: 27.04.2020; Published online: 24.06.2020 
 
 
Michael  Hanias 
International Hellenic University, Greece 
      orcid.org/0000-0002-0918-9343 
 
Stefanos Tsakonas 
University of Thessaly, Greece 
      orcid.org/0000-0003-2878-7741 
 
Lykourgos Magafas 
International Hellenic University, Greece 
      orcid.org/0000-0002-8253-9653 
 
Eleftherios I. Thalassinos 
University of Piraeus, Greece; University of Malta, Malta 
      orcid.org/0000-0003-3526-4930 
 
Loukas Zachilas 
University of Thessaly, Greece 
      orcid.org/0000-0001-7021-2955 
 
 
Deterministic chaos and forecasting in Amazon’s share prices 
 
 
JEL Classification: C53; C63; G17 
 
Keywords: time series; chaos theory; econophysics; forecasting 
 
Abstract 
 
Research background: The application of non-linear analysis and chaos theory modelling on 
financial time series in the discipline of Econophysics.  
Purpose of the article: The main aim of the article is to identify the deterministic chaotic behav-
ior of stock prices with reference to Amazon using daily data from Nasdaq-100.  
Methods: The paper uses nonlinear methods, in particular chaos theory modelling, in a case study 
exploring and forecasting the daily Amazon stock price. 
Findings & Value added: The results suggest that the Amazon stock price time series is a deter-
ministic chaotic series with a lot of noise. We calculated the invariant parameters such as the 
maxi-mum Lyapunov exponent as well as the correlation dimension, managed a two-days-ahead 
forecast through phase space reconstruction and a grouped data handling method. 
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Introduction 
 
The “Black Monday” of Stock Markets in 1987 along with the one of 2008, 
are clear failures of the standard economic view with regard to the existing 
financial analytic tools.  In 1995, Mantegna and Stanley (1995) introduced 
a new research field using the term “EconoPhysics”. Adding to this field, 
a possible framework for modeling economic phenomena is presented 
based on nonlinear dynamics and chaos theory modeling.  

The term chaos or chaotic system refers to a dynamic system that is sen-
sitive to even small changes in its initial condition. This change is a natural 
process, but it is hard to be predicted or at least cannot be estimated using 
Newton's laws of physics. The first person to grasp the concept of chaos 
was the American mathematician and later meteorologist Edward Norton 
Lorenz in the 1960s. Lorenz's system is a set of common differential equa-
tions which for given values of the initial parameters, the system exhibits 
chaotic behavior. The attractor generated by these differential equations has 
the shape of a butterfly. The combination of the butterfly shape of the Lo-
rentz attractor and the behavior of chaotic systems led to the term “butterfly 
effect”. The term is used to describe small changes in the initial conditions 
(the flapping of a butterfly's wings in Asia) which may have an unpredicta-
ble result (creating a hurricane in the USA). Thus, chaos theory is a con-
venient approach for the examination of the attributes of financial data, 
since the behavior of the financial markets is influenced by several factors 
that are relative to the market and can be affected by both internal and ex-
ternal causes. 

In cases when a financial system is a chaotic deterministic one, the 
knowledge of the degrees of freedom is crucial for its modelling. This in-
formation will help to achieve an out of sample prediction. The experi-
mental data, especially those related to economic time series, are non-
stationary and noisy. The measure of complexity is provided by correlating 
dimension and minimum embedding dimension, which makes the follow-
ing processes difficult. The first provides information regarding the sys-
tem’s complexity while the latter provides degrees of freedom, i.e. the 
number of the independent variables that defines the system.   

As a case study, the Amazon’s stock price was chosen. This framework 
could have been applied to other economic time series as well.  Amazon is 
a large company of new technology (new economy) and the behaviour of 
its stock price is of crucial importance to the index of the new Economy 
(Nasdaq-100).  The goal of the present work is to study, for the first time, 
the application of a chaotic model on Amazon’s stock daily prices, in order 
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to make predictions as well as to detect extreme fluctuations in a short or 
long forecasting horizon.  

The article composition is the following: next section gives the literature 
review, which confirms the applicability of “EconoPhysics” approach in 
finance and time series analysis. The next section describes the application 
of the non-linear analysis. The following part is devoted to forecasting the 
out of sample values, using the phase-space-reconstruction method and the 
Group Method of Data Handling (GMDH). Finally, in the last parts of the 
article the discussion and conclusions are given. 

 
 

Literature review 
 

During recent years, the prediction of the stock market prices, besides the 
interest from researchers specializing in linear forecasting methodologies, 
is the subject of interest of researchers with expertise in physics especially 
those specializing in non-linear modelling and chaos theory (Stanley et al., 
1995; Kodba et al., 2005; Garas & Argyrakis, 2007; Kennett et al., 2010). 
For that purpose, a plethora of econometric models have been developed, 
offering linear forecasting methods mostly based on autoregressive pro-
cesses. However, the returns of financial data are not characterized by the 
normal distribution, and linear models are not capable of capturing the 
complex structure of financial data, thus resulting in poor performance. 
More recent research efforts have aimed at examining the non-linear struc-
ture of financial time series, using a multitude of different approaches 
based on chaos theory in order to achieve higher level of prediction accura-
cy. 

Many physicists (Kennett et al., 2010; Garas & Argyrakis, 2007; Kodba 
et al., 2005) have published works using different theories from physics to 
study financial markets and even the macroeconomic behavior of countries 
(Magafas, 2013). The Grassberger and Procaccia method in the work of 
Schwartz and Yousefi (2013) was selected to calculate the correlation di-
mension and the minimum embedding dimension. Based on previous anal-
ysis, the next step is to apply these results to predict out of sample values of 
the corresponding time series with enough accuracy. 

Diaz (2013) after conducting rescaled range analysis on four Dow Jones 
indices concluded that time series are persistent, and the Hurst exponent 
values exhibit long memory and therefore investors should cautious when 
using linear models for forecasting purposes. 

Su et al. (2014), by performing non-linear analysis on agricultural time 
series, inferred that the data exhibit deterministic chaotic behaviour. The 
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rescaled range analysis resulted to a Hurst exponent of value above 0.5, 
indicating the fractal structure of the data. The Largest Lyapunov exponents 
are positive, and the correlation dimension corresponds to a non-integer 
value. All these remarks highlight the existence of low dimensional chaos 
within the data and the possibility of short-term prediction. 

Faggini (2014) suggested that if an economic index, for a certain time 
period, is modelled as a Brownian process or as a deterministic chaotic one, 
it can be contaminated by noise or not. Stavrinides et al. (2015) has pro-
posed a circuit (physical system), implementing a financial system with 
time-delayed feedbacks. The simple form of this dynamic system, without 
any time-delayed feed, has been already investigated and was found to 
demonstrate both a periodic and a chaotic behavior. The control of the cir-
cuit-system's chaotic behavior could be achieved by introducing the time-
delayed feedback. The overall operation was simulated, using NI's multiset 
and control of its behavior was achieved by controlling feedback delay-
time of a certain variable corresponding to a financial variable. 

Fan et al. (2017) studied a resource-economy-pollution dynamic system 
and chaotic relationship was obtained. This relationship indicts that a small 
change in economy growth may cause catastrophic environmental damage. 
Therefore, the importance of chaotic analysis was marked. 

Lahmiri (2017) showed that business family stock returns are not chaot-
ic, while market returns exhibit evidence of chaotic behaviour. The re-
search also showed that most of family business stocks and market index 
exhibit long memory in volatility. Xu et al. (2018) studied a simple dynam-
ic system of stock price time series’ fluctuation based on the rule of stock 
market. When the stock price time series’ fluctuation has been disturbed by 
external excitations, the system exhibited obviously chaotic phenomena, 
and its basic dynamic properties have been analysed.  

In the research by Sahni (2018), the results obtained from machine 
learning, representing a substantial increase in returns over existing algo-
rithmic trading engines is shown  that  this approach is modelled around 
chaos theory. In the study by Bildirici et al. (2019)  Local Lyapunov expo-
nent and Shannon Entropy tests were utilized in order to determine the 
chaotic behaviour of CDS for the USA, Turkey and China. According to 
the results, all CDS series have chaotic dynamics. The presented literature 
confirms the potential applications’ of “EconoPhysics” perspective in ex-
ploring financial data.    
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The research: method and its application  
 
Non-Linear Analysis 
 
The daily Amazon stock value is presented as a time dependent variable 
x=x(t) as it is shown in Figure 1. It covers N=2758 data from 25/04/2006 to 
07/04/2017, with the sampling rate Δt=1 day. 

As mentioned before, the reconstruction of the corresponding possible 
strange attractor is based on Grassberger and Procaccia’s method (Magafas 
et al., 2017; Hanias et al., 2008; 2009). Treating the Amazon stock price as 
a variable which belongs to a wider economic system means that it is sub-
ject to the influence of other unknown variables. It is crucial to know the 
number of differential equations of first order so the system can be mod-
elled. Initially, this number is unknown because the number of other varia-
bles is unknown as well. Using Takens’ theorem, (Takens, 1981), from one 
recorded time series a topological equivalent phase space can be construct-
ed. In financial time series, it is difficult to separate the part of the time 
series that is a deterministic chaotic one and the part with random compo-
nent and what kind of noise is produced by the randomness (Faggini, 
2014). 

According to Takens (1981) the correlation integral is calculated, (Hani-
as et al., 2008), for r0 and N∞ by equation (1) as follows: 
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W – the Theiler window, 
N – the number of data.  
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For the Amazon stock price time series N=2758iX
r

is a vector which is 

determined as in equation (2): 
 

iX
r

 = {x i,xi-τ,xi-2τ,…..xi+(m-1)τ}                                (2) 

 
where: 
τ – the time delay τ = iΔt.  
 

The time delay is estimated using the average mutual information func-
tion I(t) (Abarbanel, 1996; Fraser & Swinney, 1986). The average mutual 
information between x(t) and x(t+τ), is the amount in bits found by values 
of x(t) through measurements of x(t+τ) (Abarbanel, 1996). For example, 
when recording the daily temperature every second, the values are highly 
correlated contrary to 12-hour measurements which results in loss of in-
formation. In order to get optimal τ, the suggestion is to take the τ as the 
first minimum of the mutual information I, (Fraser & Swinney, 1986). For 
the Amazon time series, the first minimum is at τ=42-time steps as depicted 
in Figure 2. Of course, this value is a starting point. Practically the influ-
ence of τ values on correlation dimension estimation in this region of val-
ues is negligible. 

The Theiler window, (Kantz, 1997) is estimated with the help of space 
time separation plots (stp). In Figure 3, the stp plots are shown. The tem-
poral correlations are detected by plotting the spatial separations versus the 
orbit lag. From the saturation of curves (Kantz, 1997), the Theiler window 
is estimated to be W=160. 

Using value τ=42 and W=160, the calculation of correlation integrals for 
various embedding dimensions is performed. According to Ott et al., 
(1994), Abarbanel (1996), and Sprott (2003), if the relation between corre-
lation integral and radius is in the form of a power law, then the attractor is 
a stranger one and v the correlation dimension. 

The ln C(r) vs lnr for embedding dimensions m=1 to 10 is shown in 
Figure 4. 

From the linear parts of the curves in Figure (4) the correlation dimen-
sion is estimated. In Figure 5 the average slopes v vs m is given for differ-
ent embedding dimensions. The v saturates at value of v=2.28. 

According to Abarbanel (1996), the minimum embedding dimension 
mmin is the next integer above the correlation dimension. This value is 
mmin=3.  From Figure 5, the value of m where v reaches the plateau is 5, 
(Tassis et al., 2017). The conclusion is that there are at least 3 essential 
variables that are enough to reconstruct the strange attractor, and the global 
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dynamics are described by 5 variables. The distinction between low dimen-
sional chaos and correlated (random) noise should not be based solely on 
correlation dimension estimates (Provenzale et al., 1992). Other types of 
stochastic processes minimize the properties of low dimensional chaos in 
finite data sets (Weron, 2002). For this purpose, we analyze the first (nu-
merically) derivative of time series. When this quantity increases as em-
bedding dimension increases then no saturation is observed, and the signal 
is dominated by high dimensional white noise. Conversely, if the results of 
the analysis do not change under signal differentiation, the dynamic is 
a deterministic chaotic one and low dimensional.  Nevertheless, if the de-
rivative (Provenzale et al., 1992) of the time series has an accurate plateau 
(correlation dimension — embedding dimension diagram) and the resulting 
correlation dimension is considerably larger than that of the original one, 
then the time series is considered  a stochastic one. The first differences are 
displayed in Figure 6. 

We denote the correlation dimension for the first difference time series 
as D2. In Figure 7, we present the correlation dimension D2 vs embedding 
dimension m. 

The correlation dimension D2 =3.62 is larger than the correlation dimen-
sion of the original time series which is found to be v=2.28. With correla-
tion dimension D2=3.62, the minimum embedding dimension is mmin=4, as 
said above, while the global dynamics needs 7 variables as Figure7 indi-
cates. The difference between correlation dimensions of original data and 
first differential data indicates that the dynamics have a significant noisy 
component (Provenzale et al., 1992). This component will prevent a relia-
ble prediction. 
 
Time series prediction 

 
It is well known that many economic time series are non-stationary 

making the prediction procedure unreliable (Schwartz & Yousefi, 2013). In 
other words, every week the parameters as time delay correlation and em-
bedding dimension change due to noise influence and to the lack of station-
arity, so the analysis must be repeated. Additionally, for certain time and to 
investigate the trend of time series, the persistence of time series must be 
checked. The reliability of forecasting depends on the memory properties of 
the time series. If the time series is persistence large values tend to be fol-
lowed by large values too. A perturbation will be influencing the future 
predictions for an exceptionally long time (Weron, 2002). The opposite 
effect happens in anti-persistence time series. The Hurst exponent measures 
the time series memory effect. To estimate the Hurst exponent a (R/S) 
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analysis was applied. A Hurst exponent, H, between 0 and 0.5 corresponds 
to an anti-persistent time series, H=0.5 corresponds to random walk. H >= 
0.5 corresponds to persistent time series.  In case which H=0.5 the time 
series is essentially a random walk that cannot be predicted (Peters, 1991; 
1994). The majority of time series possess Hurst exponent near 0.5, (Bala-
kin et al., 2004), but there are examples of persistence time series as Dow 
Jones with H=0.72, (Peters, 1991) or anti-persistence as the volatility of the 
S&P composite prices with H=0.3  (Peters, 1991). 

To estimate Hurst exponent, we apply the Rescaled Range Analysis, R/S 
analysis as mentioned before (Peters, 1991; 1994; Weron, 2002). The rela-
tionship is given in equation (3) giving the Hurst exponent H for a specific 
time series: 
 

�
� = �����        (3) 

 
where: 
R – the range of time series so R=xmax-xmin 
xmax – the maximum value of x(t), 
xmin – the minimum value of x(t), 
S – the standard deviation of the original observation, 
a – a constant, 
n – the number of observations for sub time series, 
H – the Hurst exponent. 
 

By taking the log of equation (3), we obtain equation (4) (Peters, 1991; 
1994; Weron, 2002): 
 

log ��
�
 = ������� + log ���    (4) 

 
Calculating the slope of log/log graph of R/S vs n will, therefore, give us an 
estimate of H. This is shown in Figure 8. 

The Hurst exponent is estimated to be H=0.969. With this value the time 
series is a persistent one. Additionally, it is well known that fractal time 
series are characterized by long memory processes (Mantegna & Stanley, 
1995). 

The R/S analysis gives reliable results for stationary time series. If the 
series is not stationary, we apply the Detrended Fluctuation Analysis 
(DFA), (Peng et al., 1995). The advantage of DFA over R/S analysis is that 
overcomes the spurious detection of apparent long-range correlations that 
are an artifact of the non-stationarity. First the Amazon stock price time 
series of total length N is integrated according to equation (5): 
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���� = ∑ ����� − ������ !                                (5) 

where:  
xav – the average value of x(t). 
 

The time series are divided into bins of equal length n, the data are fitted 
with a least square for every bin. The corresponding line gives the trend in 
that bin. The detrending procedure is followed by subtracting the local 
trend yn(k) in each box from y(k). The root mean square fluctuation of this 
integrated and detrended time series is calculated by equation (6) (Peng et 
al., 1995): 
 

"��� = #!
$ ∑ ����� − �%����&$� !                            (6) 

 
For all time scales which are represented with box sizes, this computa-

tion is repeated to provide a relationship between F(n) and n. Typically, the 
relationship between logF(n) and logn is linear indicating a power law. The 
slope α of the line characterizes the fluctuations. 

The scaling exponents 'α' is classified as: 
− Uncorrelated sequence: α~0.5 
− Anti- correlated sequence: 0<α<0.5 
− Long – range temporal correlations: 0.5<α<1 
− Strong correlations that are not of a power law form: α>=1, (Peng et al., 

1995). 
The findings of the DFA analysis are depicted in Figure 9. 
The exponent α=1.6 is close to the value of random walk (α=1.5) (Peng 

et al., 1995). This means that the underlying dynamic is contaminated by 
noise. The DFA method reveals the trend and the additive fractal noise. 
This result agrees with the increase of correlation dimension of the first 
difference time series as mentioned in Section 3. This R/S and DFA analy-
sis is typical for financial time series, but there is a need for a connection 
with the chaotic nature in order to investigate the predictability of that par-
ticular time series. 

Keeping in mind that financial time series are contaminated by noise, 
the prediction horizon must be delimited. The Lyapunov exponent gives the 
predictability degree of time series. According to Sugihara and May (1990), 
with τ=42 from Figure 10, we estimate the maximum Lyapunov to be λmax= 
0.374. The positive Lyapunov exponent means that the system is unstable 
and chaotic, (Faggini, 2014). The value of λmax= 0.374 means that the pre-
dictable horizon 1/λmax is about 2 days ahead for the Amazon time series 
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(Weron, 2002). This value of maximum Lypunov exponent gives a strong 
restriction to predict further i.e. a horizon of 100 points ahead. The same 
restriction is applied to the first difference time series. In this case, the max-
imum Lypunov exponent is equal to 1.40 so the time horizon is strictly one 
day ahead. 

Based on phase space reconstruction, following the trajectory of varia-
ble x as the attractor’s stretches and folds a local simple prediction model, 
using the near neighbors, can give reasonable prediction results (Kantz, 

1997; Magafas et al., 2017). From vector iX
r

we can construct an m-

dimensional signal m
miiii

m
i Rxxxxx ∈= −+++ )},....,,,{(}{ )1(2 τττ . From 

stretching and folding of the m-dimensional vector point }{ m
Nx , into m 

phase space we can predict the time evolution  of }{ m
kNNx +  k points if  it is  

known how its neighborhood behaves using a local weighted least squares 
fitting over all neighbors’ projections k-steps ahead (Sugihara & May, 
1990; Peters, 1991; Schouten et al., 1994; Hanias et al., 2009; Thalassinos 
et al., 2009). 

With τ=42 m = 3 and optimum number of neighbors, nn to be nn= 8 as 
a trial and error result, actual and forecast time series for k=1-time steps 
ahead are presented in Figure 11. 

The out of sample forecast gives:  
− Predicted value is 894.6 while the actual value is 894.88. 

Trying to predict a next point was unsuccessful. However, using the 
global embedding dimension m=7 as the analysis of the first difference 
time series shown, we forecast successfully, out of sample, two days ahead. 
The parameters were m=7, nn=8 τ=42 and the results were:  
− Predicted value 898.621 with actual value 898.28.  
− Predicted value 893.907 with actual value 894.88. 

Applying the method of Group method of Data Handling (GMDH), two 
steps ahead prediction is achieved (Ivakhenko, 1968; Ivakhenko & Ivak-
henko, 1995). GMD algorithm is applied to predict stock prices as an effec-
tive approach in time series prediction (Fallahi et al., 2001). The corre-
sponding algorithms gradually generate complicating models and then se-
lect a set of models that show the highest forecasting accuracy at previously 
unseen data. Combinatorial GMDH model is a polynomial function with 
linear parameters. The final model consists of time series transformed into 
sets of lags. The lags are determined by a window size equal to the embed-
ding dimension. These findings are illustrated in Figure 12. The last two 
points are the out of sample prediction points. 
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The out of sample forecast gives: 
− Predicted value 898.621 with actual value 899.24. 
− Predicted value 893.907 with actual value 895.75. 

We calculate the Root Mean Square Error as a precision measurement 
of the fit of the model found to be 1.374738. 
 
 
Discussion 
 
In this article, we have classified the Amazon stock price time series as 
a deterministic chaotic one contaminated by noise for a specific period. By 
using the method of phase space reconstruction, a short time prediction of 
the Amazon prices was achieved, and the results have provided us with 
some additional information. It is observed that the predictor error increases 
along with the prediction interval. This is an indication of chaotic behavior 
caused by the separation between neighboring vectors within the phase 
space and is not met when the data follows a random walk process. The 
method of nonlinear analysis had been applied successfully as in the work 
of Ozun et al. (2010). The nonlinear analysis and the  prediction of stock 
returns using Greek and Turkish stock index data had shown empirically 
whether the markets have informational efficiency, in a comparative per-
spective (Ozun et al., 2010). Similar results i.e deterministic chaotic behav-
ior, have been found not only in individual stock analyses but also in the 
behavior of a more global indicator as the S&P index (Hanias et al., 2013).  
Additionally, the fact that economic systems obey deterministic laws and in 
a critical state had been proved  (Ozun et al., 2014). 

Additionally, the high level of persistence observed from the results of 
the DFA test highlights the fractal structure of the Amazon time series 
which exhibits long-term memory. Further investigation of the Hurst expo-
nent could possibly identify non-periodic cycles within the data related to 
the business cycles of the company. The correlation dimension, estimated 
for both raw data and first difference time series forms of the data, shows in 
both cases a saturation level, which suggests a low dimensionality strange 
attractor. On the contrary, if the data were following a random walk pro-
cess, the dimension of the phase space would continue to increase since 
Brownian noise attempts to fill all the space that is given to it.  

This is a crucial test to distinguish between random data that mimic 
chaotic behavior and deterministic chaotic one. The positive values of the 
Local Lyapunov exponent indicates the exponential divergence between 
neighboring trajectories interpreting the sensitivity to initial conditions that 
verifies the existence of chaotic dynamics within the data. Of course, the 
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positive Lyapunov exponent is an indicator only of determinism in data, 
because random walk can exhibit in some cases positive Lyapunov expo-
nent (Provenzale et al., 1992). The method of GMDH is a promising and 
robust tool in order to predict financial data (Zaychenko, 2008). In our case 
this is confirmed by predicting the Amazon share price time series with 
high accuracy.  
  
 
Conclusions 

 
The chaotic analysis of the Amazon’ stock prices has shown that the time 
series is defined by low dimensional chaos, contaminated with noise. The 
time series is persistent as Hurst exponent suggests and exhibits strong 
correlations that are not a result of a power law as DFA analysis proves.  
Besides the limits of the non-stationarity, one and two steps ahead predic-
tion is achieved using phase space reconstruction of the corresponding 
strange attractor. 

Despite the encouraging results, we should not miss the fact that when 
the time series is non-stationary, as most of time series in economy (Peters, 
1991), the change in mean and standard deviation complicates the task of 
forecasting both with the method of nearest neighbors  via phase space 
reconstruction  and with the method of GMDH. Due to non-stationary, as 
the system evolves in time, the parameters must be redefined for further 
forecast. 

We can make safe forecasting for a short period of one day or two, but it 
is also important that we can detect large fluctuations. This can help inves-
tors to identify periods of high volatility and take it into consideration in 
their risk management plan. Future work could estimate the efficiency of 
long term forecasting by applying the methodology presented while using 
weekly prices as well further investigating the non-linear properties and 
dynamics of the dataset and the modification of the regression fitting in 
order to improve the precision of the prediction results. Additionally, in 
future work methods of noise reduction, especially nonlinear methods of 
noise reduction, would apply. This task would improve the quality of pre-
diction increasing the prediction horizon.   
 
 
 
 
 
 



Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 253–273 

 

265 

References 
 
Abarbanel, H. D. I. (1996). Analysis of observed chaotic data. Springer, New 

York. 
Balakin, A. S, Matamoros, O. M., Ernesto-Galves, M., & Alfonso-Perez, 

A. (2004). Crossover from anti-persistent to persistent behavior in time series 
possessing the generalized dynamic scaling law. Physics Review, E69, 03612. 
doi: 10.1103/PhysRevE.69.036121. 

Bildirici, M., Sonüstün, B., & Gökmenoğlu, S. M. (2019). Chaotic structure of 
CDS. In AIP conference proceedings (Vol. 2178, No. 1). AIP Publishing LLC. 
doi: 10.1063/1.5020458. 

Diaz, J. F. (2013). Evidence of noisy chaotic dynamics in the returns of four Dow 
Jones Stock indices. Annual Review of Chaos Theory, Bifurcations and Dynam-
ical Systems, 4. 

Faggini, M. (2014). Chaotic time series analysis in economics: balance and per-
spectives. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24, 
042101-1-10. doi: doi.org/10.1063/1.4903797. 

Fallahi, S., Saverdi, M., & Bashiri, V. (2001). Applying GMDH- type neural net-
work and genetic algorithm for stock price prediction of Iranian cement sector. 
Applications and Applied Mathematics: An International Journal, 6(12). 

Fan, X. H., Xu, H. H., Yin, J. L., & Ning, C. (2017). Chaotic behavior in a re-
source-economy-pollution dynamic system. Journal of Multidisciplinary Engi-
neering Science and Technology, 4(1). 

Fraser, A. M., & Swinney, H. L. (1986). Independent coordinates for strange at-
tractors for mutual information. Physics Review, A33. doi: 10.1103/PhysRevA. 
33.1134. 

Garas, A., & Argyrakis, P. (2007). Correlation study of the Athens Stock Ex-
change. Physica A: Statistical Mechanics and its Applications, 380. doi: 
10.1016/j.physa.2007.02.097. 

Hanias, M., Curtis, P., & Ozun, A. (2008). Chaos theory in predicting the Istanbul 
Stock Exchange Index. Empirical Economics Letters, 7(4). 

Hanias, M. P., Avgerinos, Z., & Tombras, G. S. (2009). Period doubling, Feingen-
baum constant and time series prediction in an experimental chaotic RLD cir-
cuit. Chaos Solitons & Fractals, 40(3). doi: 10.1016/j.chaos.2007.08.061. 

Hanias, M., Magafas, L., & Konstantaki, P. (2013). Non linear analysis of S&P 
index. Equilibrium. Quarterly Journal of Economics and Economic Policy, 
8(4). doi: 10.12775/EQUIL.2013.030. 

Ivakhenko, A. G. (1968). The group method of data handling: a rival of the method 
of stochastic approximation. Soviet Automatic Control, 13(3). 

Ivakhenko, A. G., & Ivakhenko, G. A. (1995). The review of problems solvable by 
algorithms of the group method of data handling (GMDH). Pattern Recognition 
and Image Analysis, 5(4). 

Kantz, H., & Schreiber, T. (1997).  Nonlinear time series analysis. Cambridge 
University Press. 



Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 253–273 

 

266 

Kenett, D. Y., Shapira, Y., Madi, A., Zabary, S. B., Gershgoren, G. G, & Jacob, E. 
B. (2010). Dynamics of stock market correlations. AUCO Czech Economic Re-
view, 4. 

Kodba, S., Perc, M., & Marhl, M. (2005). Detecting chaos from a time series. Eu-
ropean Journal of Physics, 26. doi: 10.1088/0143-0807/26/1/021. 

Lahmiri, S. (2017). On fractality and chaos in Moroccan family business stock 
returns and volatility. Physica A: Statistical Mechanics and its Applications, 
473(C). doi: 10.1016/j.physa.2017.01.033. 

Magafas, L. (2013). Has the Greek financial problem triggered the debt problem 
for the whole Eurozone? An analysis based on EconoPhysics. China-USA 
Business Review, 12(7). 

Magafas, L., Hanias, M., Tavlatou, A., & Kostantaki, P. (2017). Non–linear prop-
erties of VIX Index. International Journal of Productivity Management and As-
sessment Technologies, 5(2). doi: 10.4018/IJPMAT.2017070102. 

Mantegna, R. N., & Stanley, H. E. (1995). Scaling behavior in the dynamics of an 
economic index. Nature, 376. doi: 10.1038/376046a0. 

Ott, E., Sauer, T., & Yorke, J. A. (1994). Coping with chaos. New York: Wiley 
Interscience Publication. 

Ozun, A., Hanias, M. P., & Curtis, P. G. (2010). A chaos analysis for Greek and 
Turkish equity markets. EuroMed Journal of Business, 5(1). doi: 10.1108/ 
14502191011043189. 

Ozun, A., Contoyiannis, Y. F., Diakonos, F. K., Hanias, M., & Magafas, L. (2014). 
Intermittency in stock market dynamics. Journal of Trading, 9(3). doi: 10.3905/ 
jot.2014.9.3.034. 

Peng, C. K., Havlin, S., & Goldberger, A. L (1995). Quantification of scaling ex-
ponents and crossover phenomena in nonstationary heartbeat time series. Cha-
os, 5(1). doi: 10.1063/1.166141. 

Peters, E. E. (1991). Chaos and order in the capital markets. New York: Wiley 
Finance Editions. 

Peters, E. E. (1994). Fractal market analysis. New York: Wiley. 
Provenzale, A., Smith, L. A., Vio, R., & Murante, G. (1992). Distinguishing be-

tween low dimensional dynamics and randomness in measures time series. 
Physica D, 58.  

Sahni, R. (2018). Analysis of stock market behavior by applying chaos theory. In 
2018 9th international conference on computing, communication and network-
ing technologies (ICCCNT). IEEE. 

Schouten, J. C., Takens, F., & Bleek, C. M. (1994). Estimation of the dimension of 
a noisy attractor. Physics Review E, 50(3). doi; 10.1103/physreve.50.1851. 

Schwartz, B., & Yousefi, S. (2013). On complex behavior and exchange rate dy-
namics. Chaos, Solitons and Fractals, 18(3). 

Sprott, J. C. (2003). Chaos and time series analysis. Oxford University Press. 
Stavrinides, S. G., Hanias, M. P., Magafas, L., & Banerjee, S. (2015). Control of 

economic situations by utilizing an electronic circuit. International Journal of 
Productivity Management and Assessment Technologies, 3(2). doi: 10.4018/ 
IJPMAT.2015070101. 



Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(2), 253–273 

 

267 

Su, X., Wang, Y., Duan, S., & Ma, J. (2014). Detecting chaos from agricultural 
product price time series. Entropy, 16(12). doi: 10.3390/e16126415. 

Sugihara, G., & May, R. M.(1990). Nonlinear forecasting as a way of distinguish-
ing chaos from measurement time error in time series. Nature, 344. doi: 10.339 
0/e16126415 

Takens, F. (1981). Dynamical systems and turbulence. Lecture Notes in Mathemat-
ics, 898. 

Tassis, D. H., Stavridides, S., Hanias, M. P., Theodorou, C., Ghibaudo, G., & Di-
mitriadis, C. (2017). Chaotic behavior of random telegraph noise in nanoscale 
UTBB FD SOI MOSFETs. IEEE Electron Devices Letters, 38(4). 

Thalassinos, I. E., Hanias, M. P., Curtis, P. G, Thalassinos, E. Y. (2009). Chaos 
theory: forecasting the freight rate of an oil tanker. International Journal of 
Computational Economics and Econometrics, 1(1). doi: 10.1504/IJCEE. 
2009.029154. 

Weron, R. (2002). Estimating long - range dependence: finite sample properties 
and confidence intervals. Physica A, 312. doi: 10.1016/S0378-4371(02)00961-
5. 

Xu, Y., Ke, Z., Xie, C., & Zhou, W. (2018). Dynamic evolution analysis of stock 
price fluctuation and its control. Complexity, 2018. doi: 10.1155/2018/5728090. 

Zaychenko, Y. (2008). The investigations of fuzzy group method of data handling 
with fuzzy inputs in the problem of forecasting in financial sphere. In Proceed-
ings of the II international conference on inductive modeling. ICIM-2008. Ky-
iv: IRTC ITS NASU. 

 



Annex 
 
 
Figure 1. Time series of Amazon’s stock values in USD 
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Figure 2.  Mutual Information I vs time delay τ for Amazon’ stock prices. The first 
minimum is at τ=42. The table shows the first minimum with detail. 
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39 2.71308 

40 2.70807 

41 2.70562 

42 2.69871 

43 2.69952 



Figure 3. Space Time separation plots for Amazon Stock value. From the curve's 
plateau Theiler window estimated to be 160 
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Figure 4. Correlation integral C(r) vs. radius r in ln–lnplot for various embedding 
dimensions m for the Amazon time series. The values of m are followed by a top to 
bottom sequence. From the slopes of linear parts of these curves, the correlation 
dimensions are estimated for various embedding dimensions m. 
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Figure 5. Correlation dimension v vs. embedding dimension m. From plateau, the 
saturation is achieved after the value of m=5. On the vertical axis, the correlation 
dimension v saturates at the non-integer value of v=2.28 
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Figure 6.   First differences of Amazon time series 
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Figure 7. Correlation dimension D2 vs. embedding dimension m for first 
difference time series of Amazon time series. The saturation level that forms 
a plateau, is achieved after the value of m=7. On the vertical axis, the correlation 
dimension v saturates at the non-integer value of v=3.62 
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Figure 8.  (R/S) Analysis for Amazon Stock value. From the slope Hurst exponent 
is estimated to be H=0.969 
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Figure 9. DFA Analysis for Amazon time series. From the slope exponent α is 
estimated to be α=1.6 

 
 
Figure 10. The Amazon’s time series average local Lyapunov exponents for a 
phase space with embedding dimension m=3. 
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Figure11. Actual and predicted time series for k=1time steps ahead with m=3 
nn=8 τ=42 
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Figure 12.  Actual and predicted time series with GMDH method 
 

 
Note: The last two points are the out of sample prediction points. 
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