Equivalence scales for continuous distributions of expenditure
DOI:
https://doi.org/10.24136/eq.2023.006Keywords:
equivalence scale, lognormal distribution, inequality aversion, subjective welfareAbstract
Research background: In the actual sizable populations of households, the standard microeconomic concept of equivalence scales is intractable since its necessary condition of equality of household welfare levels is unlikely to be fulfilled.
Purpose of the article: This paper aims to develop a concept of an equivalence scale, which can be suitable for continuous distributions of expenditures in the population.
Methods: Using household welfare intervals, we get the random equivalence scale (RES) as the ratio of expenditure distributions of the compared populations of households.
Findings & value added: We derive the parametric distribution of RES for the lognormal distributions of expenditures. The truncated distribution of RES is applied to account for possible economies of scale in the household size. A society?s inequality aversion can be helpful when selecting a single equivalence scale. We estimate RES for Poland using microdata on expenditures and subjective assessments of household welfare intervals. The estimated equivalence scales turned out to be very flat and dependent on welfare.
Downloads
References
Ahuja, J. C. (1969). On certain properties of the generalised Gompertz distribu-tion. Sankhy?: The Indian Journal of Statistics, Series B, 541?544.
View in Google Scholar
Airth, A. (1985). The progression of wage distributions. Eurostat News, Special issue, 139?161.
View in Google Scholar
Aitchison, J., & Brown, J. A. (1957). The lognormal distribution with special reference to its uses in economics. Cambridge: Cambridge University Press.
View in Google Scholar
Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2(3), 244?263. doi: 10.1016/0022-0531(70)90039-6. DOI: https://doi.org/10.1016/0022-0531(70)90039-6
View in Google Scholar
Bali, F. (2012). Are traditional equivalence scales still useful? A review and a pos-sible answer. Department of Economics University of Siena Working Paper, 656.
View in Google Scholar
Balli, F., & Tiezzi, S. (2010). Equivalence scales, the cost of children and household consumption patterns in Italy. Review of Economics of the Household, 8(4), 527?549. doi: 10.1007/s11150-009-9068-3. DOI: https://doi.org/10.1007/s11150-009-9068-3
View in Google Scholar
Bartels, C. P., & Van Metelen, H. (1975). Alternative probability density functions of income: a comparison of the lognormal, Gamma and Weibull distribution with Dutch da-ta. Vrije Universiteit, Economische Faculteit.
View in Google Scholar
Barten, A. P. (1964). Family composition, prices, and expenditure patterns. In P. Hart, L. Mills & J. K. Whitaker (Eds.). Econometric analysis for national economic planning: 16th symposium of the Colston Society. London: Butterworth.
View in Google Scholar
Battistin, E., Blundell, R., & Lewbel, A. (2009). Why is consumption more log nor-mal than income? Gibrat?s law revisited. Journal of Political Economy, 117(6), 1140?1154. DOI: https://doi.org/10.1086/648995
View in Google Scholar
Bellemare, C., Melenberg, B., & Van Soest, A. (2002). Semi-parametric models for satisfaction with income. Portuguese Economic Journal, 1(2), 181?203. doi: 10.1007/ s10258-002-0006-z. DOI: https://doi.org/10.1007/s10258-002-0006-z
View in Google Scholar
Biewen, M., & Juhasz, A. (2017). Direct estimation of equivalence scales and more evidence on independence of base. Oxford Bulletin of Economics and Statistics, 79(5), 875?905. doi: 10.1111/obes.12166. DOI: https://doi.org/10.1111/obes.12166
View in Google Scholar
Blackorby, C., & Donaldson, D. (1993). Adult-equivalence scales and the economic implementation of interpersonal comparisons of wellbeing. Social Choice and Welfare, 10(4), 335?361. doi: 10.1007/BF00182510. DOI: https://doi.org/10.1007/BF00182510
View in Google Scholar
Blundell, R., & Lewbel, A. (1991). The information content of equivalence scales. Journal of Econometrics, 50(1-2), 49?68. doi: 10.1016/0304-4076(91)90089-V. DOI: https://doi.org/10.1016/0304-4076(91)90089-V
View in Google Scholar
Bollinger, C. R., Nicoletti, C., & Pudney, S. (2012). Two can live as cheaply as one? but three?s a crowd. ISER Discussion, University of Essex, Institute for Social and Economic Research, 2012-10.
View in Google Scholar
Bresson, F. (2009). On the estimation of growth and inequality elasticities of pov-erty with grouped data. Review of Income and Wealth, 55(2), 266?302. doi: 10.1111/j.147 5-4991.2009.00311.x DOI: https://doi.org/10.1111/j.1475-4991.2009.00311.x
View in Google Scholar
Browning, M., P. A. Chiappori, & A. Lewbel (2013). Estimating consumption econ-omies of scale, adult equivalence scales, and household bargaining power. Review of Economic Studies, 80(4), 1267?303. doi: 10.1093/restud/rdt019. DOI: https://doi.org/10.1093/restud/rdt019
View in Google Scholar
Chiappori (1992). Collective labor supply and welfare. Journal of Political Economy, 100(3), 437?67. DOI: https://doi.org/10.1086/261825
View in Google Scholar
Chiappori, P. A. (2016). Equivalence versus indifference scales. Economic Journal, 126(592), 523?545. doi: 10.1111/ecoj.12371. DOI: https://doi.org/10.1111/ecoj.12371
View in Google Scholar
Crow, E. L., & Shimizu, K. (1988). Lognormal distribution. New York and Basel: Mar-cel Dekker, Inc.
View in Google Scholar
Coulter, F. A., Cowell, F. A., & Jenkins, S. P. (1992a). Differences in needs and as-sessment of income distributions. Bulletin of Economic Research, 44(2), 77?124. doi: 10.1111/j.1467-8586.1992.tb00538.x. DOI: https://doi.org/10.1111/j.1467-8586.1992.tb00538.x
View in Google Scholar
Coulter, F. A., Cowell, F. A., & Jenkins, S. P. (1992b). Equivalence scale relativities and the extent of inequality and poverty. Economic Journal, 102(414), 1067?1082. doi: 10.2307/2234376. DOI: https://doi.org/10.2307/2234376
View in Google Scholar
Cowell, F. (1977). Measuring inequality. Oxford: Phillip Allen.
View in Google Scholar
Dagum, C. (1977). New model of persodoinal income-distribution-specification and estimation. Economie Appliquée, 30(3), 413?437. DOI: https://doi.org/10.3406/ecoap.1977.4213
View in Google Scholar
Deaton, A., & Muellbauer, J. (1980). Economics and consumer behavior. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511805653. DOI: https://doi.org/10.1017/CBO9780511805653
View in Google Scholar
Donaldson, D., & Pendakur, K. (2004). Equivalent-expenditure functions and ex-penditure-dependent equivalence scales. Journal of Public Economics, 88(1-2), 175?208. doi: 10.1016/S0047-2727(02)00134-2. DOI: https://doi.org/10.1016/S0047-2727(02)00134-2
View in Google Scholar
Donaldson, D., & Pendakur, K. (2006). The identification of fixed costs from con-sumer behavior. Journal of Business & Economic Statistics, 24(3), 255?265. doi: 10.1198/073500106000000035. DOI: https://doi.org/10.1198/073500106000000035
View in Google Scholar
Dunbar, G. R., A. Lewbel, & K. Pendakur (2013). Children?s resources in collective households: Identification, estimation, and an application to child poverty in Malawi. American Economic Review, 103(1), 438?71. doi: 10.1257/aer.103.1.438. DOI: https://doi.org/10.1257/aer.103.1.438
View in Google Scholar
Dunbar, G. R., Lewbel, A., & Pendakur, K. (2021). Identification of random re-source shares in collective households without preference similarity re-strictions. Journal of Business & Economic Statistics, 39(2), 402?421. doi: 10.1080/07350015.2019.1665 532. DOI: https://doi.org/10.1080/07350015.2019.1665532
View in Google Scholar
Engel, E. (1895). Die Lebenskosten belgischer Arbeiter-Familien fruher and jetzt. International Statistical Institute Bulletin, 9, 1?74.
View in Google Scholar
Fisz, M. (1967). Probability theory and mathematical statistics. New York: John Wiley and Sons, Inc.
View in Google Scholar
Gibrat, R. (1931). Les egalitiéseconomiques. Paris: Libraire du Recueil Sirey.
View in Google Scholar
Goedhart, T., Halberstadt, V., Kapteyn, S., & van Praag, B. M. S. (1977). The poverty line: Concept and measurement. Journal of Human Resources, 12(4), 503?520. doi: 10.2307/145372. DOI: https://doi.org/10.2307/145372
View in Google Scholar
Hill, T. (1959). An analysis of the distribution of wages and salaries in Great Brit-ain. Econometrica, 27(3), 355?381. doi: 10.2307/1909467. DOI: https://doi.org/10.2307/1909467
View in Google Scholar
Jackson, C. A. (1968). Revised equivalence scale for estimating equivalent incomes or budget costs by family type. (No. 1570-1572). US Department of Labor, Bureau of Labor Statistics.
View in Google Scholar
Johnson, N. L., & Kotz, S. (1970). Distributions in statistics: Continuous univariate distributions. New York: John Wiley & Sons.
View in Google Scholar
Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Univariate continuous distribu-tions. New York: John Wiley & Sons.
View in Google Scholar
Kalecki, M. (1945). On the Gibrat distribution. Econometrica, 13(2), 161?170. doi: 10.2307/1907013. DOI: https://doi.org/10.2307/1907013
View in Google Scholar
Kapteyn, J. C. (1903). Skew frequency curves in biology and statistics. Astronomical Laboratory. Groningen: Noordhoff.
View in Google Scholar
Kapteyn, A., & Van Praag, B. (1978). A new approach to the construction of family equivalence scales. European Economic Review, 7(4), 313?335. doi: 10.1016/0014-2921(78)90009-0. DOI: https://doi.org/10.1016/0014-2921(78)90009-0
View in Google Scholar
Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics and actuarial sciences. Hoboken NJ: John Wiley & Sons. doi: 10.1002/0471457175. DOI: https://doi.org/10.1002/0471457175
View in Google Scholar
Kot, S. M. (2020). Estimating the parameter of inequality aversion on the basis of a parametric distribution of incomes. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(3), 391?417. doi: 10.24136/eq.2020.018. DOI: https://doi.org/10.24136/eq.2020.018
View in Google Scholar
Koulovatianos, C., Schröder, C., & Schmidt, U. (2005). On the income dependence of equivalence scales. Journal of Public Economics, 89(5-6), 967?996. doi: 10.2139/ ssrn.419982. DOI: https://doi.org/10.1016/j.jpubeco.2004.09.005
View in Google Scholar
Koulovatianos, C., Schröder, C., & Schmidt, U. (2019). Do demographics prevent consumption aggregates from reflecting micro-level preferences? European Economic Review, 111, 166?190. doi: 10.1016/j.euroecorev.2018.04.006. DOI: https://doi.org/10.1016/j.euroecorev.2018.04.006
View in Google Scholar
Lambert, P. J. (2001). The distribution and redistribution of income. Manchester and New York: Manchester University Press.
View in Google Scholar
Lewbel, A. (1989). Household equivalence scales and welfare comparisons. Journal of Public Economics, 39(3), 377?391. doi: 10.1016/0047-2727(89)90035-2. DOI: https://doi.org/10.1016/0047-2727(89)90035-2
View in Google Scholar
Lewbel, A. (1999). Consumer demand systems and household equivalence scales. In M. H. Pesaran & P. Schmidt (Eds.). Handbook of applied econometrics, Vol. 2: Miscroeconomics (pp. 155?185). Oxford: Blackwell Publishers Ltd.
View in Google Scholar
Lewbel, A., & Pendakur K. (2008). Equivalence scales. In The new Palgrave dictionary of economics (pp. 26?29). London: Palgrave Macmillan. doi: 10.1057/978-1-349-951 21-5_2056-1. DOI: https://doi.org/10.1057/978-1-349-95121-5_2056-1
View in Google Scholar
Lewbel, A., & Weckstein, R. (1995). Equivalence scales, costs of children and wrongful death laws. Journal of Income Distribution, 4(2), 191?208. doi: 10.25071/1874-6322.699. DOI: https://doi.org/10.25071/1874-6322.699
View in Google Scholar
Lopez, J. H., & Servén, L. (2006). A normal relationship?: poverty, growth, and inequali-ty (Vol. 3814). World Bank Publications. DOI: https://doi.org/10.1596/1813-9450-3814
View in Google Scholar
McDonald, J. B., & Xu, Y. J. (1995). A generalisation of the beta distribution with applications. Journal of Econometrics, 66(1-2), 133?152. doi: 10.1016/0304-4076(94)0 1680-X DOI: https://doi.org/10.1016/0304-4076(94)01612-4
View in Google Scholar
Malik, H. J. (1967). Exact distribution of the quotient of independent generalised gamma variables. Canadian Mathematical Bulletin, 10(3), 463?465. DOI: https://doi.org/10.4153/CMB-1967-045-7
View in Google Scholar
Melenberg, B., & van Soest, A. (1995). Semiparametric estimation of equivalence scales using subjective information. Tilburg: Tilburg University.
View in Google Scholar
Mielke, P. W., & Flueck, J. A. (1976). Distributions of ratios for some selected biva-riate probability functions. American Statistical Association, Proceedings of the So-cial Statistics Section, 608?613.
View in Google Scholar
Majumder, A., & Chakrabarty, M. (2010). Estimating equivalence scales through Engel curve analysis. In Econophysics and economics of games, social choices and quantitative techniques (pp. 241?251). Milano: Springer. doi: 10.1007/978-88-470-1501-2_25. DOI: https://doi.org/10.1007/978-88-470-1501-2_25
View in Google Scholar
Pendakur, K. (2018). Welfare analysis when people are different. Canadian Journal of Economics, 51(2), 321?360. doi: 10.1111/caje.12335. DOI: https://doi.org/10.1111/caje.12335
View in Google Scholar
Pollastri, A., & Zambruno, G. (2010). The distribution of the ratio of two inde-pendent Dagum random variables. Operations Research and Decisions, 20(3-4), 95?102.
View in Google Scholar
Prais, S. J., & Houthakker, H. S. (1955). The analysis of family budgets. Cambridge: Cambridge University Press.
View in Google Scholar
Rothbarth, E. (1943). Note on a method of determining equivalent income for families of different composition. In C. Madge (Ed.). War-time pattern of saving and spending, appendix 4 (pp. 123?30). Cambridge: Cambridge University Press
View in Google Scholar
Salem, A. B., & Mount, T. D. (1974). A convenient descriptive model of income distribution: the gamma density. Econometrica, 42(6), 1115?1127. DOI: https://doi.org/10.2307/1914221
View in Google Scholar
Schwarze, J. (2003). Using panel data on income satisfaction to estimate equiva-lence scale elasticity. Review of Income and Wealth, 49(3), 359?372. doi: 10.1111/1475-4991.00092. DOI: https://doi.org/10.1111/1475-4991.00092
View in Google Scholar
Sydenstricker, E., & King, W. I. (1921). The measurement of the relative economic status of families. Quarterly Publication of the American Statistical Association, 17, 842?57. doi: 10.2307/2965186. DOI: https://doi.org/10.2307/2965186
View in Google Scholar
Szulc, A. (2009). A matching estimator of household equivalence scales. Economics Letters, 103(2), 81?83. doi: 10.1016/j.econlet.2009.01.027. DOI: https://doi.org/10.1016/j.econlet.2009.01.027
View in Google Scholar
Thomopoulos, N. T. (2017). Statistical distributions. Applications and parameter esti-mates. Cham: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-319-65112-5
View in Google Scholar
Tinbergen, J. (1991). On the measurement of welfare. Journal of Econometrics, 50(1-2), 7?13. doi: 10.1016/0304-4076(91)90086-S. DOI: https://doi.org/10.1016/0304-4076(91)90086-S
View in Google Scholar
Van Praag, B. M. (1968). Individual welfare functions and consumer behavior: A theory of rational irrationality (Vol. 57). North-Holland Publishing Company.
View in Google Scholar
Van Praag, B. M. (1991). Ordinal and cardinal utility: An integration of the two dimensions of the welfare concept. Journal of Econometrics, 50(1-2), 69?89. doi: 10.1017/CBO9780511598968.004. DOI: https://doi.org/10.1016/0304-4076(91)90090-Z
View in Google Scholar
Van Praag, B. M. S., & van der Sar, N. L. (1988). Household cost functions and equivalence scales. Journal of Human Resources, 23(2), 193?210. doi: 10.2307/145 775. DOI: https://doi.org/10.2307/145775
View in Google Scholar
Wang, Y., Dong, W., Zhang, L., Chin, D., Papageorgiou, M., Rose, G., & Young, W. (2012). Speed modeling and travel time estimation based on truncated normal and lognormal distributions. Transportation Research Record, 2315(1), 66?72. doi: 10.3141/2315-07. DOI: https://doi.org/10.3141/2315-07
View in Google Scholar
Zaidi, A., & T. Burchardt (2005). Comparing incomes when needs differ: Equival-ization for the extra costs of disability in the U.K. Review of Income and Wealth, 51(1), 89?114. doi: 10.1111/j.1475-4991.2005.00146.x. DOI: https://doi.org/10.1111/j.1475-4991.2005.00146.x
View in Google Scholar