Google and Apple mobility data as predictors for European tourism during the COVID-19 pandemic: A neural network approach




Mobility, Tourism, Google Mobility data, Apple mobility data, Europe, COVID-19 pandemic


Research background: The COVID-19 pandemic has caused unprecedented disruptions to the global tourism industry, resulting in significant impacts on both human and economic activities. Travel restrictions, border closures, and quarantine measures have led to a sharp decline in tourism demand, causing businesses to shut down, jobs to be lost, and economies to suffer.

Purpose of the article: This study aims to examine the correlation and causal relationship between real-time mobility data and statistical data on tourism, specifically tourism overnights, across eleven European countries during the first 14 months of the pandemic. We analyzed the short longitudinal connections between two dimensions of tourism and related activities.

Methods: Our method is to use Google and Apple's observational data to link with tourism statistical data, enabling the development of early predictive models and econometric models for tourism overnights (or other tourism indices). This approach leverages the more timely and more reliable mobility data from Google and Apple, which is published with less delay than tourism statistical data.

Findings & value added: Our findings indicate statistically significant correlations between specific mobility dimensions, such as recreation and retail, parks, and tourism statistical data, but poor or insignificant relations with workplace and transit dimensions. We have identified that leisure and recreation have a much stronger influence on tourism than the domestic and routine-named dimensions. Additionally, our neural network analysis revealed that Google Mobility Parks and Google Mobility Retail & Recreation are the best predictors for tourism, while Apple Driving and Apple Walking also show significant correlations with tourism data. The main added value of our research is that it combines observational data with statistical data, demonstrates that Google and Apple location data can be used to model tourism phenomena, and identifies specific methods to determine the extent, direction, and intensity of the relationship between mobility and tourism flows.


Download data is not yet available.


Aaker, D. A., Kumar, V., & Day, G. S. (1998). Marketing research. Indianapolis: John Wiley & Sons.

Apple mobility database (2021). Apple makes mobility data available to aid COVID-19 efforts. Retrieved from 04/apple-makes-mobility-data-available-to-aid-covid-19-efforts (31.05.2021).

Apple mobility reports (2021). COVID 19 - Mobility Trends Reports. Retrieved from (31.05.2021).

Atalay, S., & Solmazer, G. (2021). The relationship between cultural value orienta-tions and the changes in mobility during the Covid-19 pandemic: a national-level analysis. Frontiers in Psychology, 12, 578190. doi: 10.3389/fpsyg.2021.578190.

Bangwayo-Skeete, P. F., & Skeete, R. W. (2015). Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tourism Management, 46, 454–464. doi: 10.1016/j.tourman.2014.07.014.

Barclay, D., Higgins, C., & Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer use as an illustration. Technological Studies, 2(2), 285–309.

Baron, T., Biji, E., Tövisi, L.Wagner, P., Isaic-Maniu, Al., Korka, M., & Porojan, D. (1996). Theoretical and economics statistics. Bucharest: Didactică și Pedagogică.

Beckers, J., Weekx, S., Beutels, P., & Verhetsel, A. (2021). COVID-19 and retail: The catalyst for e-commerce in Belgium? Journal of Retailing and Consumer Ser-vices, 62, 102645. doi: 10.1016/j.jretconser.2021.102645.

Bengtsson, L., Gaudart, J., Lu, X., Moore, S., Wetter, E., Sallah, K., Rebaudet, S., & Piarroux, R. (2015). Using mobile phone data to predict the spatial spread of cholera. Scientific reports, 5(1), 8923. doi: 10.1038/srep08923.

Brodeur, A., Gray, D., Islam, A., & Bhuiyan, S. (2021). A literature review of the economics of COVID‐19. Journal of Economic Surveys, 35(4), 1007–1044. doi: 10.1111/joes.12423.

Churchill, G. A. (2001). Basic marketing research. The Dryden Press.

Cot, C., Cacciapaglia, G., & Sannino, F. (2021). Mining Google and Apple mobility data: Temporal anatomy for COVID-19 social distancing. Scientific Reports, 11(1), 4150. doi: 10.1038/s41598-021-83441-4.

d’Astous, A. (2005). Design of marketing research. Montréal: Chenelièr Éducation.

Eurostat (2021). Nights spent at tourist accommodation establishments by resi-dents/non-residents. Retrieved from /view/tin00171/default/table?lang=en (15.06.2021).

Evrard, Y., Pras, B., & Roux, E. (2003). Marketing- studies and researches in marketing. Paris: Dunod.

Fenneteau, H., & Bialès, C. (1993). Da statistical analysis – applications and study cases for marketing. Paris: Ellipses.

Finger, F., Genolet, T., Mari, L., de Magny, G. C., Manga, N. M., Rinaldo, A., & Bertuzzo, E. (2016). Mobile phone data highlights the role of mass gatherings in the spreading of cholera outbreaks. Proceedings of the National Academy of Sciences, 113(23), 6421–6426. doi: 10.1073/pnas.1522305113.

Fritz, C., Dorigatti, E., & Rügamer, D. (2022). Combining graph neural networks and spatio-temporal disease models to improve the prediction of weekly COVID-19 cases in Germany. Scientific Reports, 12(1), 3930. doi: 10.1038/s41598-022-07757-5.

Gabor, M. R. (2013). Market prospecting though statistical methods. Bucharest: CH Beck.

Gabor, M.R. (2016). Analysis and inference of statistical data. Bucharest: CH Beck.

García-Cremades, S., Morales-García, J., Hernández-Sanjaime, R., Martínez-España, R., Bueno-Crespo, A., Hernández-Orallo, E., López-Espín, J. J., & Ce-cilia, J. M. (2021). Improving prediction of COVID-19 evolution by fusing epi-demiological and mobility data. Scientific Reports, 11(1), 15173. doi: 10.1038/s41598-021-94696-2.

Gauthy Sinéchal, M., & Vandercammen, M. (2005). Marketing studies – methods and tools. Buxelles: De Boeck & Larcier.

Geng, D., Innes, J., Wu, W., & Wang, G. (2021). Impacts of COVID-19 pandemic on urban park visitation: A global analysis. Journal of Forestry Research, 32, 553–567. doi: 10.1007/s11676-020-01249-w.

Ghorbani, A., Mousazadeh, H., Akbarzadeh Almani, F., Lajevardi, M., Hamidiza-deh, M. R., Orouei, M., Zhu, K., & Dávid, L. D (2023). Reconceptualizing cus-tomer perceived value in hotel management in turbulent times: A case study of Isfahan metropolis five-star hotels during the COVID-19 Pandemic. Sustainability, 15(8), 7022. doi: 10.3390/su15087022.

Giannelloni, J. L., & Vernette, E. (2003). Marketing studies. Paris: Vuibert.

Google Mobility database (2021). Mobility Report CSV Documentation. Retrieved from l=en (31.05.2021).

Google mobility reports (2022). Community mobility reports. Retrieved from (20.12.2022).

Hakim, A. J., Victory, K. R., Chevinsky, J. R., Hast, M. A., Weikum, D., Kazazian, L., Bhatkoti, R., Schmitz, M. M., Lynch, M., & Marston, B. J. (2021). Mitigation policies, community mobility, and COVID-19 case counts in Australia, Japan, Hong Kong, and Singapore. Public Health, 194, 238–244. doi: 10.1016/j.puhe.2021.02. 001.

Hall, M. C., Prayag, G., Fieger, P., & Dyason, D. (2020). Beyond panic buying: Consumption displacement and COVID-19. Journal of Service Management, 32(1), 113–128. doi: 10.1108/JOSM-05-2020-0151.

Hayes, B. E. (1998). Measuring customer satisfaction – survey design, use and statistical analysis methods. Wisconsin: ASQ Quality Press.

Ibarra-Espinosa, S., de Freitas, E. D., Ropkins, K., Dominici, F., & Rehbein, A. (2021). Association between COVID-19, mobility and environment in São Pau-lo, Brazil. medRxiv. doi: 10.1101/2021.02.08.21250113.

Irini, F., Kia, A. N., Shannon, D., Jannusch, T., Murphy, F., & Sheehan, B. (2021). Associations between mobility patterns and COVID-19 deaths during the pandemic: A network structure and rank propagation modelling approach. Array, 11, 100075. doi: 10.1016/j.array.2021.100075.

Jacobsen, G. D., & Jacobsen, K. H. (2020). Statewide COVID‐19 stay‐at‐home or-ders and population mobility in the United States. World Medical & Health Poli-cy, 12(4), 347–356. doi: 10.1002/wmh3.350.

Jolibert, A., & Jourdan, Ph. (2006). Marketing research – research methods and market-ing studies. Paris: Dunod.

Kolková, A., & Ključnikov, A. (2021). Demand forecasting: An alternative ap-proach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 1063–1094. doi: 10.24136/oc.2021.035.

Kraemer, M. U., Yang, C. H., Gutierrez, B., Wu, C. H., Klein, B., Pigott, D. M., Open COVID-19 Data Working Group, Faria, N. R., Li, R., Hanage, W. P., Brownstein, J. S., Layan, M., Vespignani, A., Tian, H., Dye, C., Pybus, O. G., & Scarpino, S. V. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. doi: 10.1126/science.abb4218.

Lai, S., Ruktanonchai, N. W., Zhou, L., Prosper, O., Luo, W., Floyd, J. R., Weso-lowski, A., Santillana, M., Zhang, C., Du, X., Yu, H., & Tatem, A. J. (2020). Ef-fect of non-pharmaceutical interventions to contain COVID-19 in China. Na-ture, 585(7825), 410-413. doi: 10.1038/s41586-020-2293-x.

Lambin, J. J. (1990). Marketing research- analysis, measure, forecasting. Paris: McGraw.

Lyons, K. (2020). Governments around the world are increasingly using location data to manage the coronavirus. Retrieved from /21190700/eu-mobile-carriers-customer-data-coronavirus-south-korea-taiwan-pr ivacy (31.05.2021).

Malhorta, N. (2004). Marketing studies with SPSS. Paris: Pearson Education France.

McCormick, K., & Salcedo, J. (2017). SPSS statistics for data analysis and visualization. Indianapolis: John Wiley & Sons.

Mousazadeh, H., Ghorbani, A., Azadi, H., Almani, F. A., Zangiabadi, A., Zhu, K., & Dávid, L. D. (2023). Developing sustainable behaviors for underground her-itage tourism management: The case of Persian Qanats, a UNESCO World Heritage Property. Land, 12(4), 808. doi: 10.3390/land12040808.

Munawar, H. S., Khan, S. I., Qadir, Z., Kouzani, A. Z., & Mahmud, M. P. (2021). Insight into the impact of COVID-19 on Australian transportation sector: An economic and community-based perspective. Sustainability, 13(3), 1276. doi: 10.3 390/su13031276.

Murray, T. (2021). Stay-at-home orders, mobility patterns, and spread of COVID-19. American Journal of Public Health, 111(6), 1149–1156. doi: 10.2105/AJPH.2021. 306209.

Nagy, B., Gabor, M. R., & Bacoș, I. B. (2022). Google mobility data as a predictor for tourism in Romania during the COVID-19 pandemic—A structural equa-tion modeling approach for big data. Electronics, 11(15), 2317. doi: 10.3390/electro nics11152317.

Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., Letouze, E., Ali Salah, A., Benjamins, R., Cattuto, C., Colizza, V., Cordes, N., Fraiberger, S. P., Koebe, T., Lehmann, S., Murillo, J., Pentland, A., Pham, P. N., Pivetta, F., Saramaki, J., Scarpino, S. V., Tizzoni, M., Verhulst, S., & Vinck, P. (2020). Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances, 6(23), eabc0764. doi: 10.1126/sciadv.abc0764.

Pupion, G., & Pupion, P.C. (1998). Non - parametricla tests with economics applications and administration. Paris: Economica.

Saha, J., Mondal, S., & Chouhan, P. (2021). Spatial-temporal variations in commu-nity mobility during lockdown, unlock, and the second wave of COVID-19 in India: A data-based analysis using Google's community mobility reports. Spa-tial and Spatio-temporal Epidemiology, 39, 100442. doi: 10.1016/j.sste.2021.100442.

Saporta, G. (1990). Data probabilistic analysis and statistics. Paris: Technip.

Shortall, R., Mouter, N., & Van Wee, B. (2022). COVID-19 passenger transport measures and their impacts. Transport Reviews, 42(4), 441–466. doi: 10.1080/01441 647.2021.1976307.

Sulyok, M., & Walker, M. D. (2021). Mobility and COVID-19 mortality across Scandinavia: A modeling study. Travel Medicine and Infectious Disease, 41, 102039. doi: 10.1016/j.tmaid.2021.102039.

Szász, L., Bálint, C., Csíki, O., Nagy, B. Z., Rácz, B. G., Csala, D., & Harris, L. C. (2022). The impact of COVID-19 on the evolution of online retail: The pandem-ic as a window of opportunity. Journal of Retailing and Consumer Services, 69, 103089. doi: 10.1016/j.jretconser.2022.103089.

Tamagusko, T., & Ferreira, A. (2020). Data-driven approach to understand the mobility patterns of the Portuguese population during the COVID-19 pandem-ic. Sustainability, 12(22), 9775. doi: 10.3390/su12229775.

Tizzoni, M., Bajardi, P., Decuyper, A., Kon Kam King, G., Schneider, C. M., Blondel, V., Smoreda, Z., González, M. C., & Colizza, V. (2014). On the use of human mobility proxies for modeling epidemics. PLoS Computational Biology, 10(7), e1003716. doi: 10.1371/journal.pcbi.1003716.

Vendrine, J. P. (1991). Data processing in marketing - in 10 questions, 13 applications, 27 examples and commented exercises. Paris: Les Éditions d’Organisation.

Wang, S., Tong, Y., Fan, Y., Liu, H., Wu, J., Wang, Z., & Fang, C. (2021). Observ-ing the silent world under COVID-19 with a comprehensive impact analysis based on human mobility. Scientific Reports, 11(1), 14691. doi: 10.1038/s41598-021-940 60-4.

Wesolowski, A., Eagle, N., Tatem, A. J., Smith, D. L., Noor, A. M., Snow, R. W., & Buckee, C. O. (2012). Quantifying the impact of human mobility on malaria. Science, 338(6104), 267–270. doi: 10.1126/science.1223467.

Wesolowski, A., Qureshi, T., Boni, M. F., Sundsøy, P. R., Johansson, M. A., Rasheed, S. B., Engø-Monsen, K., & Buckee, C. O. (2015). Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proceedings of the National Academy of Sciences, 112(38), 11887–11892. doi: 10.1073/pnas.1504964112.

World Tourism Organization (2022). Tourism Data Dashboard - International Tourism and Covid-19. Retrieved form (27.02.2022).

Yang, A., Yang, J., Yang, D., Xu, R., He, Y., Aragon, A., & Qiu, H. (2021a). Human mobility to parks under the COVID‐19 pandemic and wildfire seasons in the Western and Central United States. GeoHealth, 5(12), e2021GH000494. doi: 10.102 9/2021GH000494.

Yang, Y., Zhang, C. X., & Rickly, J. M. (2021b). A review of early COVID-19 re-search in tourism: Launching the annals of tourism research's curated collec-tion on coronavirus and tourism. Annals of Tourism Research, 91, 103313. doi: 10.1016/j. annals.2021.103313.




How to Cite

Nagy, B., Gabor, M. R., Bacoș, I. B., Kabil, M., Zhu, K., & Dávid, L. D. (2023). Google and Apple mobility data as predictors for European tourism during the COVID-19 pandemic: A neural network approach. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(2), 419–459.