Artificial intelligence: Effective HR assistant or invisible dictator?
DOI:
https://doi.org/10.24136/eq.3598Downloads
References
Adityaksa, R., & Suyoso, A. L. A. (2025). The impact of AI adoption on job engagement and employee trust. Golden Ratio of Human Resource Management, 5(1), 133–140. DOI: https://doi.org/10.52970/grhrm.v5i1.701
View in Google Scholar
Akram, S. (2023). Recruitment chatbots design and dialog: HCAI perspective. In Proceedings of the doctoral consortium of the 15th biannual conference of the Italian SIGCHI Chapter (CHItaly 2023) (pp. 36–42.). Turin: CEUR-WS.org.
View in Google Scholar
Albassam, W. A. (2023). The power of artificial intelligence in recruitment: An analytical review of current AI‐based recruitment strategies. International Journal of Professional Business Review, 8(6), 4. DOI: https://doi.org/10.26668/businessreview/2023.v8i6.2089
View in Google Scholar
Albert, E. T. (2019). AI in talent acquisition: A review of AI‐applications used in recruitment and selection. Strategic HR Review, 18(5), 215–221. DOI: https://doi.org/10.1108/SHR-04-2019-0024
View in Google Scholar
Andalibi, N. (2025). Emotion AI will not fix the workplace. Interactions, 32(2), 33–35. DOI: https://doi.org/10.1145/3714419
View in Google Scholar
Australian Government. (2019). Australia’s artificial intelligence ethics framework. Retrieved from https://www.industry.gov.au/data-and-publications/australias-artificial-intelligence-ethics-framework (1.02.2025).
View in Google Scholar
Balcerzak, A. P., & Valaskova, K. (2024). Artificial intelligence: Financial management under pressure of transformative technology. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(4), 1127–1137. DOI: https://doi.org/10.24136/eq.3394
View in Google Scholar
Bingley, W. J., Curtis, C., Lockey, S., Bialkowski, A., Gillespie, N., Haslam, S. A., Ko, R. K. L., Steffens, N., Wiles, J., & Worthy, P. (2023). Where is the human in human‐centered AI? Insights from developer priorities and user experiences. Computers in Human Behavior, 141, 107617. DOI: https://doi.org/10.1016/j.chb.2022.107617
View in Google Scholar
Boyd, K. L., & Andalibi, N. (2023). Automated emotion recognition in the workplace: How proposed technologies reveal potential futures of work. Proceedings of the ACM on Human-Computer Interaction, 7(CSCW1), 1–37. DOI: https://doi.org/10.1145/3579528
View in Google Scholar
Bui, H. N., & Duong, C. D. (2024). ChatGPT adoption in entrepreneurship and digital entrepreneurial intention: A moderated mediation model of technostress and digital entrepreneurial self-efficacy. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(2), 391–428. DOI: https://doi.org/10.24136/eq.3074
View in Google Scholar
Chowdhary, S., Kawakami, A., Gray, M. L., Suh, J., Olteanu, A., & Saha, K. (2023). Can workers meaningfully consent to workplace wellbeing technologies? In Proceedings of the 2023 ACM conference on fairness, accountability, and transparency (pp. 569–582). Chicago: ACM. DOI: https://doi.org/10.1145/3593013.3594023
View in Google Scholar
Cramarenco, R. E., Burcă-Voicu, M. I., & Dabija, D. C. (2023). The impact of artificial intelligence (AI) on employees’ skills and well-being in global labor markets: A systematic review. Oeconomia Copernicana, 14(3), 731–767. DOI: https://doi.org/10.24136/oc.2023.022
View in Google Scholar
Dabija, D. C., & Vătămănescu , E.-M. (2023). Artificial intelligence: The future is already here. Oeconomia Copernicana, 14(4), 1053–1056. DOI: https://doi.org/10.24136/oc.2023.031
View in Google Scholar
Dastin, J. (2022). Amazon scraps secret AI recruiting tool that showed bias against women. In K. Martin (Ed.). Ethics of data and analytics (pp. 296–299). Auerbach Publications. DOI: https://doi.org/10.1201/9781003278290-44
View in Google Scholar
European Commission. (2019). Ethics guidelines for trustworthy AI. Futurium – European Commission. Retrieved from https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines/1 (1.02.2025).
View in Google Scholar
Fragiadakis, G., Diou, C., Kousiouris, G., & Nikolaidou, M. (2024). Evaluating human‐AI collaboration: A review and methodological framework. arXiv preprint arXiv:2407.19098.
View in Google Scholar
Gowda, K. R., Kureethara, J. V., & Jaiwant, S. V. (2025). AI‐enhanced strategies for workforce involvement. In Human resource strategies in the era of artificial intelligence (pp. 55–78). IGI Global. DOI: https://doi.org/10.4018/979-8-3693-6412-3.ch003
View in Google Scholar
Gupta, A., Raj, A., Puri, M., & Gangrade, J. (2024). Ethical considerations in the deployment of AI. Tuijin Jishu/Journal of Propulsion Technology, 45(2), 1001–4055.
View in Google Scholar
Gusti, M. A., Satrianto, A., Juniardi, E., & Fitra, H. (2024). Artificial intelligence for employee engagement and productivity. Problems and Perspectives in Management, 22(3), 174. http://dx.doi.org/10.21511/ppm.22(3).2024.14. DOI: https://doi.org/10.21511/ppm.22(3).2024.14
View in Google Scholar
Häuselmann, A., Sears, A. M., Zard, L., & Fosch-Villaronga, E. (2023). EU law and emotion data. In 2023 11th international conference on affective computing and intelligent interaction (ACII) (pp. 1–8). IEEE. DOI: https://doi.org/10.1109/ACII59096.2023.10388181
View in Google Scholar
Huang, C., Zhang, Z., Mao, B., & Yao, X. (2022). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4(4), 799–819. DOI: https://doi.org/10.1109/TAI.2022.3194503
View in Google Scholar
Kaplan, A., & Haenlein, M. (2020). Rulers of the world, unite! The challenges and opportunities of artificial intelligence. Business Horizons, 63(1), 37–50. DOI: https://doi.org/10.1016/j.bushor.2019.09.003
View in Google Scholar
Kassa, B. Y., & Worku, E. K. (2025). The impact of artificial intelligence on organizational performance: The mediating role of employee productivity. Journal of Open Innovation: Technology, Market, and Complexity, 100474. DOI: https://doi.org/10.1016/j.joitmc.2025.100474
View in Google Scholar
Kliestik, T., Kral, P., Bugaj, M., & Durana , P. (2024). Generative artificial intelligence of things systems, multisensory immersive extended reality technologies, and algorithmic big data simulation and modelling tools in digital twin industrial metaverse. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(2), 429–461. DOI: https://doi.org/10.24136/eq.3108
View in Google Scholar
Kumar, S., & Mittal, S. (2024). Employee learning and skilling in AI embedded organizations–predictors and outcomes. Development and Learning in Organizations: An International Journal, 38(4), 11–15. DOI: https://doi.org/10.1108/DLO-11-2023-0249
View in Google Scholar
Lane, M., & Williams, M. (2023). Defining and classifying AI in the workplace. OECD Social, Employment and Migration Working Papers, 290. https://dx.doi.org/10.1787/59e89d7f-en. DOI: https://doi.org/10.1787/59e89d7f-en
View in Google Scholar
Lazaroiu, G., & Rogalska, E. (2023). How generative artificial intelligence technologies shape partial job displacement and labor productivity growth. Oeconomia Copernicana, 14(3), 703–706. DOI: https://doi.org/10.24136/oc.2023.020
View in Google Scholar
Lazaroiu, G., Gedeon, T., Valaskova, K., Vrbka, J., Šuleř, P., Zvarikova, K., Kramarova, K., Rowland, Z., Stehel, V., Gajanova, L., Horák, J., Grupac, M., Caha, Z., Blazek, R., Kovalova, E., & Nagy, M. (2024). Cognitive digital twin-based Internet of Robotic Things, multi-sensory extended reality and simulation modeling technologies, and generative artificial intelligence and cyber–physical manufacturing systems in the immersive industrial metaverse. Equilibrium. Quarterly Journal of Economics and Economic Policy, 19(3), 719–748. DOI: https://doi.org/10.24136/eq.3131
View in Google Scholar
Marín Díaz, G., Galán Hernández, J. J., & Galdón Salvador, J. L. (2023). Analyzing employee attrition using explainable AI for strategic HR decision-making. Mathematics, 11(22), 4677. DOI: https://doi.org/10.3390/math11224677
View in Google Scholar
Mittelstadt, B. (2019). Principles alone cannot guarantee ethical AI. Nature Machine Intelligence, 1(11), 501–507. DOI: https://doi.org/10.1038/s42256-019-0114-4
View in Google Scholar
Moravec, V., Hynek, N., Gavurova, B., & Kubak, M. (2024). Everyday artificial intelligence unveiled: Societal awareness of technological transformation. Oeconomia Copernicana, 15(2), 367–406. DOI: https://doi.org/10.24136/oc.2961
View in Google Scholar
Mujtaba, D. F., & Mahapatra, N. R. (2019). Ethical considerations in AI‐based recruitment. In 2019 IEEE international symposium on technology and society (ISTAS) (pp. 1–7). IEEE. DOI: https://doi.org/10.1109/ISTAS48451.2019.8937920
View in Google Scholar
Njoto, S., Cheong, M., Lederman, R., McLoughney, A., Ruppanner, L., & Wirth, A. (2022). Gender bias in AI recruitment systems: A sociological‐and data science‐based case study. In 2022 IEEE international symposium on technology and society (ISTAS) 1, (pp. 1–7). IEEE. DOI: https://doi.org/10.1109/ISTAS55053.2022.10227106
View in Google Scholar
Nurlia, N., Daud, I., & Rosadi, M. E. (2023). AI implementation impact on workforce productivity: The role of AI training and organizational adaptation. Escalate: Economics and Business Journal, 1(01), 1–13. DOI: https://doi.org/10.61536/escalate.v1i01.6
View in Google Scholar
Olckers, M., Vidler, A., & Walsh, T. (2022). What type of explanation do rejected job applicants want? Implications for explainable AI. (2022). arXiv preprint arXiv:2205.09649.
View in Google Scholar
Ozmen Garibay, O., Winslow, B., Andolina, S., Antona, M., Bodenschatz, A., Coursaris, C., Falco, G., Fiore, S. M., Garibay, I., Grieman, K., Havens, J. C., Jirotka, M., Kacorri, H., Karwowski, W., Kider, J., Konstan, J., Koon, S., Lopez-Gonzalez, M., Maifeld-Carucci, I., McGregor, S., Salvendy, G., Shneiderman, B., Stephanidis, C., Strobel, C., Ten Holter, C., & Xu, W. (2023). Six human‐centered artificial intelligence grand challenges. International Journal of Human–Computer Interaction, 39(3), 391–437. DOI: https://doi.org/10.1080/10447318.2022.2153320
View in Google Scholar
Parasa, S. K. (2024). Impact of AI on employee experience and engagement. European Journal of Advances in Engineering and Technology, 11(7), 12–14.
View in Google Scholar
Piotrowski, D., & Orzeszko, W. (2023). Artificial intelligence and customers’ intention to use robo-advisory in banking services. Equilibrium. Quarterly Journal of Economics and Economic Policy, 18(4), 967–1007. DOI: https://doi.org/10.24136/eq.2023.031
View in Google Scholar
Pyle, C., Roemmich, K., & Andalibi, N. (2024). US job‐seekers' organizational justice perceptions of emotion AI‐enabled interviews. In Proceedings of the ACM on human-computer interaction, 8(CSCW2) (pp. 1–42). ACM Digital Library. DOI: https://doi.org/10.1145/3686993
View in Google Scholar
Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210. DOI: https://doi.org/10.5465/amr.2018.0072
View in Google Scholar
Rigotti, C., & Fosch-Villaronga, E. (2024). Fairness, AI & recruitment. Computer Law & Security Review, 53, 105966. DOI: https://doi.org/10.1016/j.clsr.2024.105966
View in Google Scholar
Roemmich, K., Schaub, F., & Andalibi, N. (2023). Emotion AI at work: Implications for workplace surveillance, emotional labor, and emotional privacy. In Proceedings of the 2023 CHI conference on human factors in computing systems (pp. 1–20). New York: Association for Computing Machinery. DOI: https://doi.org/10.1145/3544548.3580950
View in Google Scholar
Shneiderman, B. (2020). Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy human‐centered AI systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 10(4), 1–31. DOI: https://doi.org/10.1145/3419764
View in Google Scholar
Stahl, B. C., Antoniou, J., Ryan, M., Macnish, K., & Jiya, T. (2022). Organisational responses to the ethical issues of artificial intelligence. AI & Society, 37(1), 23–37. DOI: https://doi.org/10.1007/s00146-021-01148-6
View in Google Scholar
Stark, L., & Hoey, J. (2021). The ethics of emotion in artificial intelligence systems. In Proceedings of the 2021 ACM conference on fairness, accountability, and transparency (pp. 782–793). New York: Association for Computing Machiner. DOI: https://doi.org/10.1145/3442188.3445939
View in Google Scholar
Susanto, D. B., & Hamzali, S. (2024). The role of technology in improving the effectiveness of employee recruitment and selection. Journal of Economic Education and Entrepreneurship Studies, 5(3), 421–434. DOI: https://doi.org/10.62794/je3s.v5i3.3800
View in Google Scholar
Szostek, D., Balcerzak, A. P., & Rogalska, E. (2022a). The impact of personality traits on subjective categories of counterproductive work behaviors in Central European environment. Transformations in Business & Economics, 21(2), (56), 163–180.
View in Google Scholar
Szostek, D., & Balcerzak, A. P., Rogalska, E., N., & MacGregor Pelikánová, R. (2022b). Personality traits and counterproductive work behaviors: The moderating role of demographic characteristics. Economics and Sociology, 15(4), 231–263. DOI: https://doi.org/10.14254/2071-789X.2022/15-4/12
View in Google Scholar
Szostek, D., Balcerzak, A. P., & Rogalska, E. (2023). Impact of employees’ counterproductivity on interpersonal relationships in the context of company competitive potential: Application of SEM methodology for Poland. Journal of Competitiveness, 15(3), 19–42. DOI: https://doi.org/10.7441/joc.2023.03.02
View in Google Scholar
Szostek, D., Balcerzak, A. P., & Rogalska, E. (2024). Job satisfaction and work engagement impact on counterproductive work behaviors: Moderating influence of demographic characteristic of employees. Economics and Sociology, 17(2), 126–150. DOI: https://doi.org/10.14254/2071-789X.2024/17-2/6
View in Google Scholar
Van Esch, P., Black, J. S., & Arli, D. (2021). Job candidates’ reactions to AI-enabled job application processes. AI and Ethics, 1, 119–130. DOI: https://doi.org/10.1007/s43681-020-00025-0
View in Google Scholar
Wu, W., Huang, T., & Gong, K. (2020). Ethical principles and governance technology development of AI in China. Engineering, 6(3), 302–309. DOI: https://doi.org/10.1016/j.eng.2019.12.015
View in Google Scholar
Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J.C., Sellitto, M., Shoham, Y., Clark, J. & Perrault, R. (2021). The AI index 2021 annual report. arXiv preprint arXiv:2103.06312.
View in Google Scholar
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Equilibrium. Quarterly Journal of Economics and Economic Policy

This work is licensed under a Creative Commons Attribution 4.0 International License.