Determination of the current-voltage characteristics of the photovoltaic cells using the CoachLabII+ measuring console
DOI:
https://doi.org/10.24136/jaeee.2022.010Keywords:
CoachLabII console, current-voltage characteristics, maximum power, one-diode model, photovoltaic cellAbstract
The Coach6 software and the CoachLabII+ measuring console coupled with a computer and equipped with appropriate voltage and current sensors were used to determine the current-voltage and power-voltage characteristics of the photovoltaic cells. The current-voltage and power-voltage characteristics for a single cell and cells connected in series and in parallel were tested depending on the light intensity. Using a simplified theoretical model of a photovoltaic cell based on the one-diode equivalent circuit and Shockley diode equation, the ideality factor, diode saturation current and source current were determined, fitting the appropriate theoretical relationship to the measurement results. Based on the current-voltage and power-voltage characteristics, the short-circuit current, open circuit voltage, maximum power, fill factor, conversion efficiency and load resistance were determined. The dependence of the determined parameters on the light intensity was discussed.
References
Owusu P.A., Asumadu-Sarkodie S. (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering. Vol. 3, 1167990, doi: 10.1080/23311916.2016.1167990
Ellabban O., Abu-Rub H., Blaabjerg F. (2014) Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews. Vol. 39, pp 748-764, doi: 10.1016/j.rser.2014.07.113
Fouad M.A., Shihata L.A., Morgana El-S.I. (2017) An integrated review of factors influencing the perfomance of photovoltaic panels. Renewable and Sustainable Energy Reviews. Vol. 80, pp 1499-1511, doi: 10.1016/j.rser.2017.05.141
Muteri V., Cellura M., Curto D., Franzitta V., Longo S., et al. (2020) Review on life cycle assessment of solar photovoltaic panels. Energies. Vol. 13, 252, doi: 10.3390/en13010252
Tomaszewski P.E. (2002) Jan Czochralski'father of the Czochralski method. Journal of Crystal Growth. Vol. 236, Issues 1-3, pp 1-4, doi: 10.1016/S0022-0248(01)02195-9
Sze S.M., Li Y., Ng K.K. Physics of Semiconductor Devices. John Wiley & Sons 2021.
Kaur N., Singh M., Pathak D., Wagner T., Nunzid J.M. (2014) Organic materials for photovoltaic applications: Review and mechanism. Synthetic Metals. Vol. 190, pp 20-26, doi: 10.1016/j.synthmet.2014.01.022
Snaith, H.J. (2018) Present status and future prospects of perovskite photovoltaics. Nature Mater 17, pp 372-376, doi: 10.1038/s41563-018-0071-z
Martínez-Miranda L.J. (2022) Liquid crystals in photovoltaics. CRC Press, Boca Raton, Taylor & Francis Group. doi: org/10.1201/9781351175784
Kumar M., Kumar S. (2017) Liquid crystals in photovoltaics: A new generation of organic photovoltaics. Polymer Journal. Vol. 49, pp 85-111, doi: org/10.1038/pj.2016.109
Vinod, Kumar R., Singh S.K. (2018) Solar photovoltaic modeling and simulation: As a renewable energy solution. Energy Reports. Vol. 4, pp 701-712, doi: 10.1016/j.egyr.2018.09.008
Tamrakar V., Gupta S.C., Yashwant S. (2015) Single-diode PV cell modeling and study of characteristics of single and two-diode equivalent circuit. Electrical and Electronics Engineering: An International Journal. Vol 4, pp 13-24 doi: 10.14810/elelij.2015.4302
El-Ahmar M.H., El-Sayed A.-H.M., Hemeida A.M., (2016) "Mathematical modeling of photovoltaic module and evalute the effect of varoius paramenters on its performance". Eighteenth International Middle East Power Systems Conference (MEPCON), pp 741-746, doi: 10.1109/MEPCON.2016.7836976
Peng L., Sun Y., Meng Z., Wang Y., Xu Y. (2013) A new method for determining the characteristics of solar cells. Journal of Power Sources. Vol. 227, pp 131-136, doi: 10.1016/j.jpowsour.2012.07.061
Zhang Ch., Zhang J., Hao Y. Lin Z., Zhu Ch. (2011) A simple and efficient solar cell parameter extraction method from a single current-voltage curve. Journal of Applied Physics. Vol. 110, 064504, doi: 10.1063/1.3632971
Ishibashi K., Kimura Y., Niwano M. (2008) An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic. Journal of Applied Physics. Vol. 103, 094507, doi: 10.1063/1.2895396
Pastuszak J., Węgierek P. (2022) Photovoltaic cell generations and current research directions for their development. Materials. Vol. 15, 5542, doi: 10.3390/ma15165542
De Wolf S., Descoeudres A., Holman Z.C., Ballif Ch. (2012) High-efficiency Silicon Heterojunction Solar Cells: A Review. Green. Vol. 2, pp. 7-24, doi: 10.1515/green-2011-0018
Wu Y., Van Aken B.B., Janssen G., J. Loffler J., Li F., et al. (2014) Metal wrap through silicon heterojunction solar cells and first made minimodules. Conference EuPVSEC 2014, Amsterdam
Sharma K., Sharma V., Sharma S.S. (2018) Dye-sensitized solar cells: Fundamentals and current status. Nanoscale Research Letters. Vol. 13:381, doi: 10.1186/s11671-018-2760-6
Abolghasemi R., Rasuli R., Alizadeh M. (2020) Microwave-assisted growth of high-quality CdSe quantum dots and its application as a sensitizer in photovoltaic cells. Materials Today Communications. Vol. 22, 100827, doi: 10.1016/j.mtcomm.2019.100827
Zuo Ch., Bolink H.J., Han H., Huang J., Cahen D., Ding L. (2016) Advances in perovskite solar cells. Advances Science. Vol. 3, 1500324, doi: 10.1002/advs.201500324
Schmidt-Mende L., Fechtenkotter A., Mullen K., Moons E. (2001) Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science. Vol. 293, pp. 1119-1122, doi: 10.1126/science.293.5532.1119
Andrienko D. (2018) Introduction to liquid crystals. Journal of Molecular Liquids. Vol. 267, pp 520-541, doi: 10.1016/j.molliq.2018.01.175
Łempicka-Mirek K., Król M., Sigurdsson H., Wincukiewicz A., Morawiak P., et al. (2022) Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite. Science Advances. Vol. 8, eabq7533, doi: 10.1126/sciadv.abq753
Bajpai M., Yadav N., Kumar S., Srivastava R., Dhar R. (2015) Bulk heterojunction solar cells based on self-assembling disc-shaped liquid crystalline material. Liquid Crystals, Vol. 43, pp 305-313, doi: 10.1080/02678292.2015.1108466
Zheng O., Guojia Fang G., Bai W., Sun N., Qin P., et al. (2011) Efficiency improvement in organic solar cells by inserting a discotic liquid crystal. Solar Energy Materials & Solar Cells. Vol. 95, pp 2200-2205, doi: 10.1016/j.solmat.2011.03.024
Högberg D., Soberats B., Uchida S., Yoshio M., Lars Kloo L., et al. (2014) Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells. Chemical Materials. Vol. 26, pp 6496-6502, doi: 10.1021/cm503090z
Różański S.A. (2020) Computer-aided experiments in student physics laboratory. Acta Physica Polonica B Proceedings Supplement. Vol. 13, Issue 4. pp 937-942, doi: 10.5506/APhysPolBSupp.13.937
Breitenstein O. (2013) Understanding the current-voltage characteristics of industrial crystalline silicon solar cells by considering inhomogeneous current distributions. Opto-Electronics Review. Vol. 21, Issue 3. pp 259-282, doi: 10.2478/s11772-013-0095-5
Chegaar M., Hamzaoui A., Namoda A., Petit P., Aillerie M., Herguth A. (2013) Effect of illumination intensity on solar cells parameters. Energy Procedia. Vol. 36, pp 722-729, doi: 10.1016/j.egypro.2013.07.084
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Automation, Electronics and Electrical Engineering
This work is licensed under a Creative Commons Attribution 4.0 International License.