Particle swarm methods for transport and logistics optimization processes
DOI:
https://doi.org/10.24136/jaeee.2023.002Keywords:
transport, logistics, optimization, computer scienceAbstract
This article describes heuristic approaches to static optimization methods, taking into account the nature of the motion of a swarm of particles representing, for example, birds, ants, bees, fireflies, bats, krill, cuckoos, cuttlefish, cockroaches, or the pollination process of flowers. In the given descriptions of the methods, the features of swarm intelligence are detailed, the optimization quality indicators are formulated, and flow charts of the computational algorithms are provided.
References
Cheng L., Wang Z.B., Song Y.H., Guo A.H. (2011) Cockroach swarm optimization algorithm for TSP. Advanced Engineering Forum, vol 1, 226-229, https://doi.org/10.3390/e19050213.
Bonabeau E., Dorigo M., Theraulaz G. (1999) Swarm intelligence: from natural to artificial systems. Oxford, Oxford University Press, ISBN: 0-19-513158-4.
Eesa A.S., Brifcani A.N.A., Orman, Z. (2013) Cuttlefish algorithm – a novel bio-inspired optimization algorithm. International Journal of Scientific & Engineering Research, vol 4(9), 1978-1986, ISSN: 2229-5518.
Gandomi A.H., Alavi A.H. (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simulat, vol 17, 4831-4845, https://doi.org/ 10.1016/j.cnsns.2012.05.010.
Kennedy J., Eberhart R.C. (1999) The particle swarm: social adaptation in information-processing systems. In D. Corne M. Dorigo and F. Glover (eds.), New ideas in optimization. London, McGraw-Hill, ID: 59759192.
Lazarowska A. (2022) Safe Trajectory Planning for Maritime Surface Ships. Springer, Berlin/Heidelberg, Germany, vol 13, 1–185, https://doi.org/10.1007/978-3-030-97715-3.
Lisowski J. (2022) Metody optymalizacji. Pulishing House of Gdynia Maritime Uniwersity, 133-165 (in polish), ISBN: 978-83-7421-407-0.
Pham D.T., Ghanbarzadeh A., Koc E., Otri S., Rahim S., Zaidi M. (2005) The bees algorithm. Technical Report: MEC 0501, Manufacturing Engineering Centre, Cardiff University.
Yng X.S. (2008) Nature-inspired metaheuristic algorithms. Luniver Press, ISBN: 978-1-905986-28-6.
Yang X.S., Deb S. (2009) Cuckoo search via Lévy flights. World Congress on Nature & Biologically Inspired Computing, NaBIC 2009, IEEE Publications, 210-214, https://doi.org/10.1109/NABIC.2009.5393690.
Yang X.S. (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization, NISCO 2010. Studies in Computational Intelligence, vol 284, 65-74, https://doi.org/10.1007/978-3-642-12538-6_6.
Yang X.S. (2012) Flower pollination algorithm for global optimization. Lecture Notes in Computer Science, vol 7445, 240-249, https://doi.org/10.1007/978-3-642-32894-7_27.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Journal of Automation, Electronics and Electrical Engineering

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.