Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries
DOI:
https://doi.org/10.24136/oc.2019.034Keywords:
bankruptcy, bankruptcy prediction, variables, countries of Visegrad fourAbstract
Research background: Since the first bankruptcy prediction models were developed in the 60?s of the 20th century, numerous different models have been constructed all over the world. These individual models of bankruptcy prediction have been developed in different time and space using different methods and variables. Therefore, there is a need to analyse them in the context of various countries, while the question about their suitability arises.
Purpose of the article: The analysis of more than 100 bankruptcy prediction models developed in V4 countries confirms that enterprises in each country prefer different explanatory variables. Thus, we aim to review systematically the bankruptcy prediction models developed in the countries of Visegrad four and analyse them, with the emphasis on explanatory variables used in these models, and evaluate them using appropriate statistical methods.
Methods: Cluster analysis and correspondence analysis were used to explore the mutual relationships among the selected categories, e.g. clusters of explanatory variables and countries of the Visegrad group. The use of the cluster analysis focuses on the identification of homogenous subgroups of the explanatory variables to sort the variables into clusters, so that the variables within a common cluster are as much similar as possible. The correspondence analysis is used to examine if there is any statistically significant dependence between the monitored factors ? bankruptcy prediction models of Visegrad countries and explanatory variables.
Findings & Value added: Based on the statistical analysis applied, we confirmed that each country prefers different explanatory variables for developing the bankruptcy prediction model. The choice of an appropriate and specific variable in a specific country may be very helpful for enterprises, researchers and investors in the process of construction and development of bankruptcy prediction models in conditions of an individual country.
Downloads
References
Ahmad, I., Olah, J., Popp, J., & Mate, D. (2018). Does business group affiliation matter for superior performance? Evidence from Pakistan. Sustainability, 10(9). doi: 10.3390/su10093060.
DOI: https://doi.org/10.3390/su10093060
View in Google Scholar
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4). doi: 10.2307/2978933.
DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
View in Google Scholar
Altman, E. I., Sabato, G., & Wilson, N. (2010). The value of non-financial information in small and medium-sized enterprise risk management. Journal of Credit Risk, 6(2). doi: 10.21314/JCR.2010.110.
DOI: https://doi.org/10.21314/JCR.2010.110
View in Google Scholar
Arbolino, R., Calucci, F., Cira, A., Ioppolo, G., & Yigitcanlar, T. (2017). Efficiency of the EU regulation on greenhouse gas emissions in Italy: The hierarchical cluster analysis approach. Ecological Indicators, 81. doi: 10.1016/j.ecolind. 2017.05.053.
DOI: https://doi.org/10.1016/j.ecolind.2017.05.053
View in Google Scholar
Balcerzak, A.P., Kliestik, T., Streimikiene, D., & Smrcka, L. (2018). Non-parametric approach to measuring the efficiency of banking sectors in European Union countries. Acta Polytechnica Hungarica, 14(7). doi: 10.12700/APH. 14.7.2017.7.4.
DOI: https://doi.org/10.12700/APH.14.7.2017.7.4
View in Google Scholar
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis. Management Science, 30(9). doi: 10.1287/mnsc.30.9.1078.
DOI: https://doi.org/10.1287/mnsc.30.9.1078
View in Google Scholar
Banyiova, T., Bielikova, T., & Piterkova, A. (2014). Prediction of agricultural enterprises distress using data envelopment analysis. In 11th international scientific conference European financial systems, Lednice. Czech Republic.
View in Google Scholar
Bauer, P., & Edresz, M. (2016). Modelling bankruptcy using Hungarian firm-level data MNB. Budapest, Hungary: Magyar Nemzeti Bank.
View in Google Scholar
Beaver, W. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4(3). doi: 10.2307/2490171.
DOI: https://doi.org/10.2307/2490171
View in Google Scholar
Bellovary, J., Giacomino, D. E., & Akers, M. D. (2007). A review of bancruptcy prediction studies: 1930 to present. Journal of Financial Education, 33.
View in Google Scholar
Binkert, C. H. (1999). Fruherkennung von Unternehmenskrisen mit Hilfe geeigneter Methoden im deutschen und slowakischen Wirtschaftsraum, Ph.D. Thesis. Bratislava, Slovakia: University of Economics in Bratislava.
View in Google Scholar
Blanton, T. (2018). Convolutional neural networks, analytical algorithms, and personalized health care: embracing the massive data analysis capabilities of deep learning artificial intelligence systems to complement and improve medical services. American Journal of Medical Research, 5(2). doi: 10.22381/ AJMR5220187.
DOI: https://doi.org/10.22381/AJMR5220187
View in Google Scholar
Boda, M. (2009). Predicting bankruptcy of Slovak enterprises by an artificial neural network. Forum Statisticum Slovacum, 9.
View in Google Scholar
Bozsik, J. (2010). Artificial neural networks in default forecast. In 8th international conference on applied informatics. Eger, Hungary.
View in Google Scholar
Brozyna, J., Mentel, G., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistics sector in Poland and Slovakia. Transformations in Business & Economics, 15(1).
View in Google Scholar
Calabrese, R., & Osmetti, S. A. (2013). Modelling small and medium enterprise loan defaults as rare events: the generalized extreme value regression model. Journal of Applied Statistics, 40(6). doi: 10.1080/02664763.2013.784894.
DOI: https://doi.org/10.1080/02664763.2013.784894
View in Google Scholar
Charnes, A., Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2. doi: 10.1016/0377-2217(78)90138-8.
DOI: https://doi.org/10.1016/0377-2217(78)90138-8
View in Google Scholar
Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4). doi: 10.1093/rof/8.4.537.
DOI: https://doi.org/10.1007/s10679-004-6279-6
View in Google Scholar
Chrastinova, Z. (1998). Metódy hodnotenia ekonomickej bonity a predikcie finančnej situácie poľnohospodárskych podnikov. Bratislava: VÚEPP.
View in Google Scholar
Constand, L. R., & Yazdipour, R. (2011). Firm failure prediction models: a critique and a review of recent developments. Advances in entrepreneurial finance: with applications from behavioral finance and economics, 18.
DOI: https://doi.org/10.1007/978-1-4419-7527-0_10
View in Google Scholar
Cygler, J., & Wyka, S. (2019). Internal barriers to international R&D cooperation: the case of Polish high tech firms. Forum Scientiae Oeconomia, 7(1). doi: 10.23762/FSO_VOL7_NO1_2.
View in Google Scholar
Delina, R., & Packova, M. (2013). Prediction bankruptcy models validation in Slovak business environment. E & M Ekonomie a management, 16(3).
View in Google Scholar
Dimitras, A. I., Zanakis, S. H., & Zopoundis, C. (1996). A survey of business failure with an emphasis on prediction method and industrial applications. European Journal of Operational Research, 90. doi: 10.1016/0377-2217(95)00070-4.
DOI: https://doi.org/10.1016/0377-2217(95)00070-4
View in Google Scholar
Divsalar, M., Roodsaz, H., Vahdatinia, F., Norouzzadeh, G., & Behrooz, A. H. (2012). A robust data-mining approach to bankruptcy prediction. Journal of Forecasting, 31(6). doi: 10.1002/for.1232.
DOI: https://doi.org/10.1002/for.1232
View in Google Scholar
Dixon, Ch. (2016). Why the global financial crisis had so little impact on the banking systems of emergent East Asia. Journal of Self-Governance and Management Economics, 4(2). doi: 10.22381/JSME4220162.
DOI: https://doi.org/10.22381/JSME4220162
View in Google Scholar
Dvoracek, J., & Sousedikova R. (2006). Forecasting companies’ future economic development. Acta Montanistica Slovaca, 11.
View in Google Scholar
Ekes, K. S., & Koloszar, L. (2014). The efficiency of bankruptcy forecast models in the Hungarian SME sector. Journal of Competitiveness, 6(2). doi: 10.7441 /joc.2014.02.05.
View in Google Scholar
Fejer-Kiraly, G. (2015). Bankruptcy prediction: a survey on evolution, critiques, and solutions. Acta University Sapientiae, Economics and Business, 3. doi: 10.1515/auseb-2015-0006.
DOI: https://doi.org/10.1515/auseb-2015-0006
View in Google Scholar
Fitzpatrick, P. (1932). A comparison of ratios of successful industrial enterprises with those of failed firms. Certified Public Accountant, 2.
View in Google Scholar
Fogarassy, C., Neubauer, E., Mansur, H., Tangl, A., Olah, J., & Popp, J. (2018). The main transition management issues and the effects of environmental accounting on financial performance – with focus on cement industry. Administratie si Management Public, 31. doi: 10.24818/amp/2018.31-04.
View in Google Scholar
Freed, N., & Glover, F. (1981). Simple but powerful goal programming approach to the discriminant problem. European Journal of Operational Research, 7. doi: 10.1016/0377-2217(81)90048-5.
DOI: https://doi.org/10.1016/0377-2217(81)90048-5
View in Google Scholar
Frydman, H., Altman, E. I., & Kao D. L. (1985). Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance, 40(1). doi: 10.2307/2328060.
DOI: https://doi.org/10.1111/j.1540-6261.1985.tb04949.x
View in Google Scholar
Gajdka, J., & Stos, D. (1996). The use of discriminant analysis in assessing the financial condition of enterprises. Restructuring in the Process of Transformation and Development of Enterprises. Krakow, Poland: Wydawnictwo Akademii Ekonomicznej w Krakowie.
View in Google Scholar
Gandolfi, G., Regalli, M., Soana, M. G., & Arcuri, M. C. (2018). Underpricing and Long-Term performance of IPOs: evidence from European intermediary-oriented markets. Economics, Management, and Financial Markets, 13(3). doi: 10.22381/EMFM13320181.
DOI: https://doi.org/10.22381/EMFM13320181
View in Google Scholar
Gavurova, B., Janke, F., Packova, M., & Pridavok, M. (2017). Analysis of impact of using trend variables on bankruptcy prediction models performance. Ekonomicky Casopis, 65(4).
View in Google Scholar
Gordini, N. (2014). A genetic algorithm approach for SMEs bankruptcy prediction: empirical evidence from Italy. Expert Systems with Applications, 41(14). doi: 10.1016/j.eswa.2014.04.026.
DOI: https://doi.org/10.1016/j.eswa.2014.04.026
View in Google Scholar
Granato, D., Santos, J. S., Escher, G. B., Ferreira, B. L., & Maggio, R. M. (2018). Use of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for multivariate association between bioactive compounds and functional properties in foods: a critical perspective. Trends in Food Science & Technology, 72. doi: 10.1016/j.tifs.2017.12.006.
DOI: https://doi.org/10.1016/j.tifs.2017.12.006
View in Google Scholar
Grice, J. S., & Dugan, M. T. (2001). The limitations of bankruptcy prediction models: some cautions for the researcher. Review of Quantitative Finance and Accounting, 17. doi: 10.1023/A:1017973604789.
DOI: https://doi.org/10.1023/A:1017973604789
View in Google Scholar
Gruszczynski, M., Ciesielski, P., & Domeracki, M. (2005). New bankruptcy prediction models for Polish companies. Working paper, Department of Applied Econometrics, Warsaw School of Economics.
View in Google Scholar
Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: a robust clustering algorithm for categorical attributes. Information Systems, 25(5). doi: 10.1109/ICDE.1999 .754967.
DOI: https://doi.org/10.1016/S0306-4379(00)00022-3
View in Google Scholar
Gulka, M. (2016). The prediction model of financial distress of enterprises operating in conditions of SR. Biatec, 24(6).
View in Google Scholar
Gupta, Y., Rao, R. P., & Bagchi, P.K. (1990). Linear goal programming as an alternative to multivariate discriminant analysis: a note. Journal of Business Finance and Accounting, 17(4). doi: 10.1111/j.1468-5957.1990.tb01146.x.
DOI: https://doi.org/10.1111/j.1468-5957.1990.tb01146.x
View in Google Scholar
Gupta, J., Gregoriou, A., & Healy, J. (2014). Forecasting bankruptcy for SMEs using hazard function: to what extent does size matter? Review of Quantitative Finance and Accountings, 45(4). doi: 10.1007/s11156-014-0458-0.
DOI: https://doi.org/10.1007/s11156-014-0458-0
View in Google Scholar
Gurcik, L. (2002). G-index – the financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48(8).
DOI: https://doi.org/10.17221/5338-AGRICECON
View in Google Scholar
Hadasik, D. (1998). The bankruptcy of enterprises in Poland and methods of its forecasting. Poznan, Poland: Wydawnictwo Akademii Ekonomicznej w Poznaniu.
View in Google Scholar
Hajdu, O., & Virag, M. (2001). Hungarian model for predicting financial bankruptcy. Society and Economy in Central and Eastern Europe, 23(12).
View in Google Scholar
Harumova, A., & Janisova, M. (2014). Rating Slovak enterprises by scoring functions. Ekonomicky casopis, 62(5).
View in Google Scholar
Higgs, N. T. (1991). Practical and innovative uses of correspondence analysis. Statistician, 40(2). doi: 10.2307/2348490.
DOI: https://doi.org/10.2307/2348490
View in Google Scholar
Hill, M. O. (1974). Correspondence analysis: a neglected multivariate method. Applied Statistics, 23(3). doi: 10.2307/2347127.
DOI: https://doi.org/10.2307/2347127
View in Google Scholar
Hurtosova, J. (2009). Development of rating model as a toll to assess the enterprise credibility. Ph.D. Thesis. Bratislava, Slovakia: University of Economics in Bratislava.
View in Google Scholar
Jagiełło, R. (2013). Discriminant and Logistic Analysis in the Process of Assessing the Creditworthiness of Enterprises. Materiały i Studia, Zeszyt 286. Warszawa: NBP.
View in Google Scholar
Jakubik, P., & Teply, P. (2011). The JT index as an indicator of financial stability of corporate sector. Prague Economic Papers, 20(2).
DOI: https://doi.org/10.18267/j.pep.394
View in Google Scholar
Javadi, S., Hashemy, S.M., Mohammadi, K., Howard, K.W.F., & Neshat, A. (2017). Classification of aquifer vulnerability using K-means cluster analysis. Journal of Hydrology, 549. doi: 10.1016/j.jhydrol.2017.03.060.
DOI: https://doi.org/10.1016/j.jhydrol.2017.03.060
View in Google Scholar
Kalouda, F., & Vanicek, R. (2013). Alternative bankruptcy models – first results. In 10th international scientific conference European financial systems, Telc, Czech Republic.
View in Google Scholar
Karas, M., & Reznakova, M. (2013). Bankruptcy prediction model of industrial enterprises in the Czech Republic. International Journal of Mathematical Models and Methods in Applied Sciences, 7(5).
View in Google Scholar
Karas, M., & Reznakova, M. (2015). A parametric or nonparametric approach for creating a new bankruptcy prediction model: the evidence from the Czech Republic. International Journal of Mathematical Models and Methods in Applied Sciences, 8.
View in Google Scholar
Kasgari, A. A., Divsalar, M., Javid, M. R., & Ebrahimian,S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and Pro- bit-based analyses. Neural Computing and Applications, 23(3,4). doi: 10.1007/s00521-012-1017-z.
DOI: https://doi.org/10.1007/s00521-012-1017-z
View in Google Scholar
Kaufman, L., & Rousseeuw, P. (2005). Finding groups in data: an introduction to custer analysis. Hoboken: Wiley.
View in Google Scholar
Kiviluoto, K. (1998). Predicting bankruptcies with self organizing map. Neurocomputing, 21. doi: 10.1016/S0925-2312(98)00038-1.
DOI: https://doi.org/10.1016/S0925-2312(98)00038-1
View in Google Scholar
Kiestik, T., Kliestikova, J., Kovacova, M., Svabova, L., Valaskova, K., Vochozka, M., & Olah, J. (2018). Prediction of financial health of business entities in transition economies. New York, New York: Addleton Academic Publishers.
View in Google Scholar
Kliestik, T., Valaskova, K., Kliestikova, J., Kovacova, M., & Svabova, L. (2019). Bankruptcy prediction in transition economies. Zilina, Slovakia: EDIS.
View in Google Scholar
Korab, V. (2001). One approach to small business bankruptcy prediction: the case of the Czech Republic. In VII SIGEFF congress new logistics for the new economy. Naples: SIGEFF International Association for FUZZY SET, University Degli Studi Di Napoli, Federico II.
View in Google Scholar
Korol, T. (2004). Assessment of the accuracy of the application of discriminatory methods and artificial neural networks for the identification of enterprises threatened with bankruptcy. Gdansk: Doctoral dissertation.
View in Google Scholar
Korol, T. (2010). Forecasting bankruptcies of companies using soft computing techniques. Finansowy Kwartalnik Internetowy “e-Finanse”, 6.
View in Google Scholar
Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4). doi: 10.24136/eq.v12i4.40.
DOI: https://doi.org/10.24136/eq.v12i4.40
View in Google Scholar
Kristof, S., & Koloszar, L. (2014). The Efficiency of Bankruptcy Forecast Models in the Hungarian SME Sector. Journal of Competitiveness, 6. doi: 10.7441/joc.2014.02.05.
DOI: https://doi.org/10.7441/joc.2014.02.05
View in Google Scholar
Lane, W. R., Looney, S. W., Wansley, J. W. (1986). An application of the Cox proportional hazards model to bank failure. Journal of Banking and Finance, 10(4). doi: 10.1016/S0378-4266(86)80003-6.
DOI: https://doi.org/10.1016/S0378-4266(86)80003-6
View in Google Scholar
Luoma, M., & Laitinen, E. K. (1991). Survival analysis as a tool for company failure prediction. Omega International Journal of Management Science, 19(6). doi: 10.1016/0305-0483(91)90015-L.
DOI: https://doi.org/10.1016/0305-0483(91)90015-L
View in Google Scholar
Machek, O., Smrcka, L., & Strouhal, J. (2015). How to predict potential default of cultural organizations. In 7th international scientific conference finance and performance of firms in science, education and practice, 7.
View in Google Scholar
Maczynska, E. (1994). Assessment of the condition of the enterprise. Simplified methods. Zycie Gospodarcze, 38.
View in Google Scholar
Mangasarian, O. L. (1965). Linear and nonlinear separation of patterns by linear programming. Operation research, 13. doi: 10.1287/opre.13.3.444.
DOI: https://doi.org/10.1287/opre.13.3.444
View in Google Scholar
McKee, T. E. (2003). Rough sets bankruptcy prediction models versus auditor signaling rates. Journal of Forecasting, 22. doi: 10.1002/for.875.
DOI: https://doi.org/10.1002/for.875
View in Google Scholar
McKee, T. E. (2000). Developing a bankruptcy prediction model via rough sets theory. International Journal of Intelligent Systems in Accounting Finance and Management, 9(3). doi: 10.1002/1099-1174(200009)9:33.0.CO;2-C.
DOI: https://doi.org/10.1002/1099-1174(200009)9:3<159::AID-ISAF184>3.0.CO;2-C
View in Google Scholar
Messier, W. F., & Hansen, J. V. (1988). Including rules for expert system development: An example using default and bankruptcy data. Management Science, 34(2).
DOI: https://doi.org/10.1287/mnsc.34.12.1403
View in Google Scholar
Michaluk, K. (2003). Effectiveness of corporate bankruptcy models in Polish economic conditions. Corporate Finance in the Face of Globalization Processes. Warszawa, Poland: Wydawnictwo Gda´ nskiej Akademii Bankowej.
View in Google Scholar
Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and Logit models in bankruptcy prediction. Economics and Sociology, 9(4). doi: 10.14254/2071-789X.2016/9-4/6.
DOI: https://doi.org/10.14254/2071-789X.2016/9-4/6
View in Google Scholar
Nath R., Jackson, W. M., & Jones, T. W. (1992). A comparison of the classical and the linear programming approaches to the classification problem in discriminant analysis. Journal of Statistical Computation and Simulation, 41. doi: 10.1080/00949659208811392.
DOI: https://doi.org/10.1080/00949659208811392
View in Google Scholar
Nemec, D., & Pavlik, M. (2016). Predicting insolvency risk of the Czech companies. In International scientific conference quantitative methods in economics (Multiple criteria decision making XVIII). Bratislava, Slovakia.
View in Google Scholar
Neumaierova, I., & Neumaier, I. (2002). Vykonnost a trzni hodnota firmy. Prague, Czech Republic: Grada Publishing.
View in Google Scholar
Odom, M., & Sharda, R. (1990). A neural network model for bankruptcy prediction. Proceedings of the Second IEEE International Joint Conference on Neural Networks. San Diego, USA, 63-68.
DOI: https://doi.org/10.1109/IJCNN.1990.137710
View in Google Scholar
Ouenniche, J., & Tone, K. (2017). An out-of-sample evaluation framework for DEA with application in bankruptcy prediction. Annals of Operations Research, 254(1-2). doi: 10.1007/s10479-017-2431-5.
DOI: https://doi.org/10.1007/s10479-017-2431-5
View in Google Scholar
Pisula, T., Mentel, G., & Brozyna, J. (2013). Predicting bankruptcy of companies from the logistics sector operating in the Podkarpacie region. Modern Management Review, 18. doi: 10.7862/rz.2013.mmr.33.
DOI: https://doi.org/10.7862/rz.2013.mmr.33
View in Google Scholar
Pisula, T., Mentel, G., & Brozyna, J. (2015). Non-statistical methods of analyzing of bankruptcy risk. Folia Oeconomica Stetinensia, 15. doi: 10.1515/foli-2015-0029.
DOI: https://doi.org/10.1515/foli-2015-0029
View in Google Scholar
Platt, H. D., & Platt, M. B. (1990). Development of a class of stable predictive variables: the case of bankruptcy prediction. Journal of Business Finance & Accounting, 17(1). doi: 10.1111/j.1468-5957.1990.tb00548.x.
DOI: https://doi.org/10.1111/j.1468-5957.1990.tb00548.x
View in Google Scholar
Pociecha, J., Pawelek, B., Baryla, M., & Augustyn, S. (2014). Statistical methods of forecasting bankruptcy in the changing economic situation. Krakow, Poland: Fundacja Uniwersytetu Ekonomicznego w Krakowie.
View in Google Scholar
Pogodzinska, M., & Sojak, S. (1995). The use of discriminant analysis in predicting bankruptcy of enterprises. AUNC Ekonomia, 25(299).
View in Google Scholar
Popp, J., Olah, J., Machova, V., & Jachowicz, A. (2018). Private equity market of the Visegrad group. Ekonomicko-manazerske spektrum, 12(1). doi: 10.26552/ems.2018.1.
DOI: https://doi.org/10.26552/ems.2018.1.1-15
View in Google Scholar
Ptak-Chmielewska, A. (2016). Statistical models for corporate credit risk assessment — rating models. Acta Universitatis Lodziensis Folia Oeconomica 3. doi: 10.18778/0208-6018.322.09.
DOI: https://doi.org/10.18778/0208-6018.322.09
View in Google Scholar
Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques-A review. European Journal of Operational Research, 180(1). doi: 10.1016/j.ejor.2006.08.043.
DOI: https://doi.org/10.1016/j.ejor.2006.08.043
View in Google Scholar
Rohacova, V., & Kral P. (2015). Corporate failure prediction using DEA: an application to companies in the Slovak Republic. In 18th applications of mathematics and statistics in economics, International Scientific Conference. Jindrichuv Hradec, Czech Republic.
View in Google Scholar
Salaga, J., Bartosova, V., & Kicova, E. (2015). Economic value added as a measurement tool of financial performance. Procedia Economics and Finance, 26. doi: 10.1016/S2212-5671(15)00877-1.
DOI: https://doi.org/10.1016/S2212-5671(15)00877-1
View in Google Scholar
Schonfelder, B. (2003). Debt collection and bankruptcies in Slovakia: a study of institutional development. Post-Communist Economies, 15(2). doi: 10.1080/ 14631370308097.
DOI: https://doi.org/10.1080/14631370308097
View in Google Scholar
Slowinski, R., & Zopounidis, C. (1995). Application of the rough set approach to evaluation of bankruptcy risk. Intelligent Systems in Accounting, Finance and Management, 4. doi: 10.1002/j.1099-1174.1995.tb00078.x.
DOI: https://doi.org/10.1002/j.1099-1174.1995.tb00078.x
View in Google Scholar
Sion, G. (2018). How artificial intelligence is transforming the economy. Will cognitively enhanced machines decrease and eliminate tasks from human workers through automation? Journal of Self-Governance and Management Economics, 6(4). doi: 10.22381/JSME6420185.
DOI: https://doi.org/10.22381/JSME6420185
View in Google Scholar
Sourial, N., Wolfson Ch., Zhu, B., Gletcher, J., Karunananthan, S., Bandeen-Roche, K., Beland, F., & Bergman, H. (2010). Correspondence analysis is a useful tool to uncover the relationships among categorical variables. Journal of Clinical Epidemiologia, 63(6). doi: 10.1016/j.jclinepi.2009.08.008.
DOI: https://doi.org/10.1016/j.jclinepi.2009.08.008
View in Google Scholar
Spanos, M., Dounias, M., & Zopounidis, C. (1999). A fuzzy knowledge-based decision aiding method for the assessment of financial risk: the case of corporate bankruptcy prediction.In European symposium on intelligent techniques (ESIT).
View in Google Scholar
Stevens, J. P. (2002). Applied multivariate statistics for the social sciences. New Jersey Lawrence Erlbaum.
DOI: https://doi.org/10.4324/9781410604491
View in Google Scholar
Svabova, L., Kramarova, K., & Durica, M. (2018). Prediction model of firm´s financial distress. Ekonomicko-manazerske spektrum, 12(1). doi: 10.26552/ems.2018.1.16-29.
DOI: https://doi.org/10.26552/ems.2018.1.16-29
View in Google Scholar
Uradnicek, V. (2016). Variantne Metody Predikcie Financneho Zdravia Podnikov v Podmienkach Dynamickeho Ekonomickeho Prostredia. Banska Bystrica, Slovakia: Belianum.
View in Google Scholar
Valaskova, K., Kliestik, T., & Kovacova, M. (2018). Management of financial risks in Slovak enterprises using regression analysis. Oeconomia Copernicana, 9(1). doi: 10.24136/oc.2018.006.
DOI: https://doi.org/10.24136/oc.2018.006
View in Google Scholar
Valecky, J., & Slivkova, E. (2012). Microeconomic scoring model of Czech firms’ bankruptcy. Ekonomicka Revue, 15(1). doi: 10.7327/cerei.2012.03.02.
DOI: https://doi.org/10.7327/cerei.2012.03.02
View in Google Scholar
Vavrina, J., Hampel, D., Janova, J. (2013). New approach for the financial distress classification in agribusiness. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 16(4). doi: 10.11118/actaun201361041177.
DOI: https://doi.org/10.11118/actaun201361041177
View in Google Scholar
Virag, M., & Kristof, T. (2005). Neural neutworks in bankruptcy prediction — a comparative study on the basis of the first Hungarian bankruptcy model. Acta Oeconomica, 55. doi: 10.1556/AOecon.55.2005.4.2.
DOI: https://doi.org/10.1556/aoecon.55.2005.4.2
View in Google Scholar
Virag, M., & Kristof, T. (2014). Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model. Acta Oeconomica, 64(4). doi: 10.1556/AOecon .64.2014.4.2.
DOI: https://doi.org/10.1556/aoecon.64.2014.4.2
View in Google Scholar
Vochozka, M., Strakova, J., & Vachal, J. (2015). Model to predict survival of transportation and shipping companies. Nase More, 62. doi: 10.17818/nm/ 2015/si4.
DOI: https://doi.org/10.17818/NM/2015/SI4
View in Google Scholar
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58.
DOI: https://doi.org/10.1080/01621459.1963.10500845
View in Google Scholar
Wedzki, D. (2000). The problem of using the ratio analysis to predict the bankruptcy of Polish enterprises - Case study. Bank i Kredyt, 5.
View in Google Scholar
Wrzosek, M., & Ziemba, A. (2009). Construction of a rating based on a bankruptcy prediction model. Edinburgh, UK: Credit Research Center, The University of Edinburgh.
View in Google Scholar
Zopoudinis, C. (1987). A multicriteria decision-making methodology for the evaluation of the risk of failure and an application. Foundations of Control Engineering, 12(1).
View in Google Scholar
Zopoudinis, C., & Dimitras, A. I. (1998). Multicriteria decision aid methods for the prediction of business failure. Dordrecht: Kluwer Academic Publishers.
DOI: https://doi.org/10.1007/978-1-4757-2885-9
View in Google Scholar
Zopounidis, C., & Doumpos, M. (1999). A multicriteria aid methodology for sorting decision problems: The case of financial distress. Computational Economics, 14(3). doi: 10.1023/A:1008713823812.
DOI: https://doi.org/10.1023/A:1008713823812
View in Google Scholar
Zvarikova, K., Spuchlakova, E., a Sopkova, G. (2017). International comparison of the relevant variables in the chosen bankruptcy models used in the risk management. Oeconomia Copernicana, 8(1). doi: 10.24136/oc.v8i1.10.
DOI: https://doi.org/10.24136/oc.v8i1.10
View in Google Scholar