Multifrequency-based non-linear approach to analyzing implied volatility transmission across global financial markets
DOI:
https://doi.org/10.24136/oc.2022.021Keywords:
shocks transmission, information flow, Rényi transfer entropy, multi-scale, market conditionsAbstract
Research background: The contagious impact of the COVID-19 pandemic has heightened financial market's volatility, nonlinearity, asymmetric and nonstationary dynamics. Hence, the existing relationship among financial assets may have been altered. Moreover, the level of investor risk aversion and market opportunities could also alter in the pandemic. Predictably, investors in the heat of the moment are concerned about minimizing losses. In order to determine the level of hedge risks between implied volatilities in the COVID-19 pandemic through information flow, it is required to take into account the increased vagueness of economic projections as well as the increased uncertainty in asset values as a result of the pandemic.
Purpose of the article: The study aims to examine the transmission of information between the VIX-implied volatility index for S&P 500 and fifteen other implied volatility indices in the COVID-19 pandemic.
Methods: We relied on daily changes in the VIX and fifteen other implied volatility indices from commodities, currencies, and stocks. The study employed the improved complete ensemble empirical mode decomposition with adaptive noise which is in line with the heterogeneous expectations of market participants to denoise the data and extract intrinsic mode functions (IMFs). Subsequently, we clustered the IMFs based on common features into high, low, and medium frequencies. The analysis was carried out using Rényi transfer entropy (RTE), which allowed for the evaluation of both linear and non-linear, as well as varied distributions of the market dynamics.
Findings & value added: Findings from the RTE revealed a bi-directional flow of negative information amid the VIX and each of the volatility indices, particularly in the long term. We found this behavior of the markets to be consistent at varying levels of investors' risk aversion. The findings help investors with their portfolio strategies in the time of the pandemic, which has resulted in fluctuating levels of risk aversion. Our findings characterize global financial markets to be ?non-linear heterogeneous evolutionary systems?. The results also lend support to the emerging delayed volatility of market competitiveness and external shocks hypothesis.
Downloads
References
Adam, A. M. (2020). Susceptibility of stock market returns to international eco-nomic policy: evidence from effective transfer entropy of Africa with the im-plication for open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 71. doi: 10.3390/joitmc6030071. DOI: https://doi.org/10.3390/joitmc6030071
View in Google Scholar
Adam, A. M., Kyei, K., Moyo, S., Gill, R., & Gyamfi, E. N. (2022). Similarities in Southern African Development Community (SADC) exchange rate markets structure: evidence from the ensemble empirical mode decomposition. Journal of African Business, 23(2), 516?530. DOI: https://doi.org/10.1080/15228916.2021.1874795
View in Google Scholar
Agyei, S. K., Adam, A. M., Bossman, A., Asiamah, O., Owusu Junior, P., Asafo-Adjei, R., & Asafo-Adjei, E. (2022). Does volatility in cryptocurrencies drive the interconnectedness between the cryptocurrencies market? Insights from wave-lets. Cogent Economics & Finance, 10(1), 2061682. doi: 10.1080/23322 039.2022.2061682. DOI: https://doi.org/10.1080/23322039.2022.2061682
View in Google Scholar
Archer, C., Owusu Junior, P., Adam, A. M., Asafo-Adjei, E., & Baffoe, S. (2022). Asymmetric dependence between exchange rate and commodity prices in Ghana. Annals of Financial Economics, 17(2) 2250012. doi: 10.1142/S2010495222 500129. DOI: https://doi.org/10.1142/S2010495222500129
View in Google Scholar
Asafo-Adjei, E., Adam, A. M., & Darkwa, P. (2021a). Can crude oil price returns drive stock returns of oil producing countries in Africa? Evidence from bivari-ate and multiple wavelet. Macroeconomics and Finance in Emerging Market Economies. Advance online publication. doi: 10.1080/17520843.2021.1953864. DOI: https://doi.org/10.1080/17520843.2021.1953864
View in Google Scholar
Asafo-Adjei, E., Adam, A. M., Adu-Asare Idun, A., & Ametepi, P. Y. (2022a). Dy-namic interdependence of systematic risks in emerging markets economies: a recursive-based frequency-domain approach. Discrete Dynamics in Nature and Society, 2022, 1139869. doi: 10.1155/2022/1139869. DOI: https://doi.org/10.1155/2022/1139869
View in Google Scholar
Asafo-Adjei, E., Adam, A. M., Owusu Junior, P., Akorsu, P. K., & Arthur, C. L. (2022b). A CEEMDAN-based entropy approach measuring multiscale infor-mation flow between macroeconomic conditions and stock returns of BRICS. Complexity, 2022, 1?24. doi: 10.1155/2022/7871109. DOI: https://doi.org/10.1155/2022/7871109
View in Google Scholar
Asafo-Adjei, E., Boateng, E., Isshaq, Z., Idun, A. A. A., Owusu Junior, P., & Adam, A. M. (2021b). Financial sector and economic growth amid external uncertain-ty shocks: insights into emerging economies. Plos one, 16(11), e0259303. doi: 10.1371/journal.pone.0259303. DOI: https://doi.org/10.1371/journal.pone.0259303
View in Google Scholar
Asafo-Adjei, E., Frimpong, S., Owusu Junior, P., Adam, A. M., Boateng, E., & Ofori Abosompim, R. (2022). Multi-frequency information flows between global commodities and uncertainties: evidence from COVID-19 pandem-ic. Complexity, 2022, 6499876. doi: 10.1155/2022/6499876. DOI: https://doi.org/10.1155/2022/6499876
View in Google Scholar
Asafo-Adjei, E., Owusu Junior, P., & Adam, A. M. (2021c). Information flow be-tween global equities and cryptocurrencies: a VMD-based entropy evaluating shocks from COVID-19 pandemic. Complexity, 2021, 4753753. doi: 10.1155/2 021/4753753. DOI: https://doi.org/10.1155/2021/4753753
View in Google Scholar
Badshah, I. U. (2018). Volatility spillover from the fear index to developed and emerging markets. Emerging Markets Finance and Trade, 54(1), 27?40. doi: 10.1080/1540496X.2016.1220294. DOI: https://doi.org/10.1080/1540496X.2016.1220294
View in Google Scholar
Badshah, I., Bekiros, S., Lucey, B. M., & Uddin, G. S. (2018). Asymmetric linkages among the fear index and emerging market volatility indices. Emerging Mar-kets Review, 37, 17?31. doi: 10.1016/j.ememar.2018.03.002. DOI: https://doi.org/10.1016/j.ememar.2018.03.002
View in Google Scholar
Balcilar, M., & Demirer, R. (2015). Effect of global shocks and volatility on herd behavior in an emerging market: evidence from Borsa Istanbul. Emerging Markets Finance and Trade, 51(1), 140?159. doi: 10.1080/1540496X.2015.1 011520. DOI: https://doi.org/10.1080/1540496X.2015.1011520
View in Google Scholar
Barson, Z., Junior, P. O., Adam, A. M., & Asafo-Adjei, E. (2022). Connectedness between gold and cryptocurrencies in COVID-19 pandemic: a frequency-dependent asymmetric and causality analysis. Complexity, 2022, 7648085. doi: 10.1155/2022/7648085. DOI: https://doi.org/10.1155/2022/7648085
View in Google Scholar
Beck, C, & Schögl, F. (1995). Thermodynamics of chaotic systems: an introduc-tion. Cambridge: Cambridge University Press.
View in Google Scholar
Behrendt, S., Dimpfl, T., Peter, F. J., & Zimmermann, D. J. (2019). RTransferEn-tropy?quantifying information flow between different time series using effec-tive transfer entropy. SoftwareX, 10, 100265. doi: 10.1016/j.softx.2019.100265. DOI: https://doi.org/10.1016/j.softx.2019.100265
View in Google Scholar
Boateng, E., Adam, A. M., & Owusu Junior, P. (2021). Modelling the heterogene-ous relationship between the crude oil implied volatility index and African stocks in the coronavirus pandemic. Resources policy, 74, 102389. doi: 10.101 6/j.resourpol.2021.102389. DOI: https://doi.org/10.1016/j.resourpol.2021.102389
View in Google Scholar
Boateng, E., Asafo-Adjei, E., Addison, A., Quaicoe, S., Yusuf, M. A., & Adam, A. M. (2022a). Interconnectedness among commodities, the real sector of Ghana and external shocks. Resources Policy, 75, 102511. doi: 10.1016/j.resourpol.20 21.102511. DOI: https://doi.org/10.1016/j.resourpol.2021.102511
View in Google Scholar
Boateng, E., Owusu Junior, P., Adam, A. M., Abeka Jr, M., Qabhobho, T., & Asafo-Adjei, E. (2022b). Quantifying information flows among developed and emerg-ing equity markets. Mathematical Problems in Engineering, 2022, 2462077. doi: 10.1155/2022/2462077. DOI: https://doi.org/10.1155/2022/2462077
View in Google Scholar
Bossman, A. (2021). Information flow from COVID-19 pandemic to Islamic and conventional equities: an ICEEMDAN-induced transfer entropy analy-sis. Complexity, 2021, 4917051. doi: 10.1155/2021/4917051. DOI: https://doi.org/10.1155/2021/4917051
View in Google Scholar
Bossman, A., Agyei, S. K., Owusu Junior, P., Agyei, E. A., Akorsu, P. K., Marfo-Yiadom, E., & Amfo-Antiri, G. (2022a). Flights-to-and-from-quality with Is-lamic and conventional bonds in the COVID-19 pandemic era: ICEEMDAN-based transfer entropy. Complexity, 2022, 1027495. doi: 10.1155/2022/1027 495. DOI: https://doi.org/10.1155/2022/1027495
View in Google Scholar
Bossman, A., Owusu Junior, P., & Tiwari, A. K. (2022b). Dynamic connectedness and spillovers between Islamic and conventional stock markets: time-and fre-quency-domain approach in COVID-19 era. Heliyon, 8(4), e09215. doi: 10.101 6/j.heliyon.2022.e09215. DOI: https://doi.org/10.1016/j.heliyon.2022.e09215
View in Google Scholar
Bulathsinhalage, S., & Pathirawasam, C. (2017). The effect of corporate govern-ance on firms? capital structure of listed companies in Sri Lanka. Journal of Competitiveness, 9(2), 19?33. doi: 10.7441/joc.2017.02.02. DOI: https://doi.org/10.7441/joc.2017.02.02
View in Google Scholar
Bui, T. D., & Bui, H. T. M. (2020). Threshold effect of economic openness on bank risk-taking: evidence from emerging markets. Economic Modelling, 91, 790?803. doi: 10.1016/j.econmod.2019.11.013. DOI: https://doi.org/10.1016/j.econmod.2019.11.013
View in Google Scholar
Chen, J. H., & Huang, Y. F. (2014). Long memory and structural breaks in model-ling the volatility dynamics of VIX-ETFs. International Journal of Business, Economics and Law, 4(1), 54?63.
View in Google Scholar
Cheuathonghua, M., Padungsaksawasdi, C., Boonchoo, P., & Tongurai, J. (2019). Extreme spillovers of VIX fear index to international equity mar-kets. Financial Markets and Portfolio Management, 33(1), 1?38. doi: 10.1007/s11408-018-0323-6. DOI: https://doi.org/10.1007/s11408-018-0323-6
View in Google Scholar
Ciner, C., Gurdgiev, C., & Lucey, B. M. (2010). Hedges and safe havens: an exam-ination of stocks, bonds, oil, gold and the dollar. International Review of Financial Analysis, 29, 202?211. doi: 10.1016/j.irfa.2012.12.001. DOI: https://doi.org/10.1016/j.irfa.2012.12.001
View in Google Scholar
Colominas, M. A., Schlotthauer, G., & Torres, M. E. (2014). Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomedical Signal Processing and Control, 14, 19?29. doi: 10.1016/j.bspc.2014.06.009. DOI: https://doi.org/10.1016/j.bspc.2014.06.009
View in Google Scholar
Del Castillo Olivares, A. F., Kumiega, A., Sterijevski, G., & Van Vliet, B. (2018). An empirical study of volatility spillover worldwide. Wilmott, 2018(95), 48?59. doi: 10.1002/wilm.10675. DOI: https://doi.org/10.1002/wilm.10675
View in Google Scholar
Dimpfl, T., & Peter, F. J. (2014). The impact of the financial crisis on transatlantic information flows: an intraday analysis. Journal of International Financial Markets, Institutions and Money, 31, 1?13. doi: 10.1016/j.intfin.2014.03.004. DOI: https://doi.org/10.1016/j.intfin.2014.03.004
View in Google Scholar
Dutta, A., Nikkinen, J., & Rothovius, T. (2017). Impact of oil price uncertainty on middle east and african stock markets. Energy, 123, 189?197. doi: 10.1016/j.en ergy.2017.01.126. DOI: https://doi.org/10.1016/j.energy.2017.01.126
View in Google Scholar
Espinosa-Méndez, C., & Arias, J. (2021). COVID-19 effect on herding behaviour in European capital markets. Finance Research Letters, 38, 101787. doi: 10.101 6/j.frl.2020.101787. DOI: https://doi.org/10.1016/j.frl.2020.101787
View in Google Scholar
Flandrin, P., Goncalves, P., & Rilling, G. (2004). Detrending and denoising with empirical mode decompositions. In 2004 12th European signal processing conference. Vienna: IEEE, 1581?1584.
View in Google Scholar
Gallegati, M. (2012). A wavelet-based approach to test for financial market con-tagion. Computational Statistics & Data Analysis, 56(11), 3491?3497. doi: 10.10 16/j.csda.2010.11.003. DOI: https://doi.org/10.1016/j.csda.2010.11.003
View in Google Scholar
Gunay, S. (2020). A new form of financial contagion: Covid-19 and stock market responses. SSRN, 3584243. doi: 10.2139/ssrn.3584243. DOI: https://doi.org/10.2139/ssrn.3584243
View in Google Scholar
Hartley, R. V. (1928). Transmission of information 1. Bell System Technical Journal, 7(3), 535?563. doi: 10.1002/j.1538-7305.1928.tb01236.x. DOI: https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
View in Google Scholar
Hommes, C. H. (2001). Financial markets as nonlinear adaptive evolutionary systems. Quantitative Finance, 1(1), 149. doi: 10.1088/1469-7688/1/1/311. DOI: https://doi.org/10.1080/713665542
View in Google Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N-C., Tung, C.C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analy-sis. Proceedings of the Royal Society of London. Series A: Mathematical, Phys-ical and Engineering Sciences, 454(1971), 903?995. doi: 10.1098/rspa.1998. 0193. DOI: https://doi.org/10.1098/rspa.1998.0193
View in Google Scholar
Jizba, P., Kleinert, H., & Shefaat, M. (2012). Rényi?s information transfer between financial time series. Physica A: Statistical Mechanics and its Applications, 391(10), 2971?2989. doi: 10.1016/j.physa.2011.12.064. DOI: https://doi.org/10.1016/j.physa.2011.12.064
View in Google Scholar
Khoury, T. A., Junkunc, M., & Mingo, S. (2015). Navigating political hazard risks and legal system quality: venture capital investments in Latin Ameri-ca. Journal of Management, 41(3), 808?840. doi: 10.1177/0149206312453737. DOI: https://doi.org/10.1177/0149206312453737
View in Google Scholar
Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79?86. DOI: https://doi.org/10.1214/aoms/1177729694
View in Google Scholar
Lahmiri, S., & Bekiros, S. (2020). Renyi entropy and mutual information meas-urement of market expectations and investor fear during the COVID-19 pan-demic. Chaos, Solitons & Fractals, 139, 110084. doi: 10.1016/j.chaos.2020.1 10084y. DOI: https://doi.org/10.1016/j.chaos.2020.110084
View in Google Scholar
Law, S. H., & Habibullah, M. S. (2009). The determinants of financial develop-ment: institutions, openness and financial liberalisation. South African Journal of Economics, 77(1), 45?58. doi: 10.1111/j.1813-6982.2009.01201.x. DOI: https://doi.org/10.1111/j.1813-6982.2009.01201.x
View in Google Scholar
Le, T. H., Kim, J., & Lee, M. (2016). Institutional quality, trade openness, and financial sector development in Asia: an empirical investigation. Emerging Markets Finance and Trade, 52(5), 1047?1059. doi: 10.1080/1540496X.2015.1 103138. DOI: https://doi.org/10.1080/1540496X.2015.1103138
View in Google Scholar
Lekhal, M., & El Oubani, A. (2020). Does the adaptive market hypothesis explain the evolution of emerging markets efficiency? Evidence from the Moroccan financial market. Heliyon, 6(7), e04429. doi: 10.1016/j.heliyon.2020.e04429 DOI: https://doi.org/10.1016/j.heliyon.2020.e04429
View in Google Scholar
Li, T., Qian, Z., & He, T. (2020). Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM. Complexity, 2020, 1209547. doi: 10.1155/2020/1209547. DOI: https://doi.org/10.1155/2020/1209547
View in Google Scholar
Lim, K. P., & Kim, J. H. (2011). Trade openness and the informational efficiency of emerging stock markets. Economic Modelling, 28(5), 2228?2238. doi: 10.10 16/j.econmod.2011.06.004. DOI: https://doi.org/10.1016/j.econmod.2011.06.004
View in Google Scholar
Lo, A. W. (2004). The adaptive markets hypothesis. Journal of Portfolio Management, 30(5), 15?29. doi: 10.3905/jpm.2004.442611. DOI: https://doi.org/10.3905/jpm.2004.442611
View in Google Scholar
Marschinski, R., & Kantz, H. (2002). Analysing the information flow between financial time series. European Physical Journal B-Condensed Matter and Complex Systems, 30(2), 275?281. doi: 10.1140/epjb/e2002-00379-2. DOI: https://doi.org/10.1140/epjb/e2002-00379-2
View in Google Scholar
Müller, U. A., Dacorogna, M. M., Davé, R. D., Pictet, O. V., Olsen, R. B., & Ward, J. R. (1993). Fractals and intrinsic time: a challenge to econometri-cians. Unpublished manuscript, Olsen & Associates, Zürich.
View in Google Scholar
Nyakurukwa, K. (2021). Information flow between the Zimbabwe Stock Ex-change and the Johannesburg Stock Exchange: a transfer entropy ap-proach. Organizations and Markets in Emerging Economies, 12(24), 353?376. doi: 10.15388/omee.2021.12.60. DOI: https://doi.org/10.15388/omee.2021.12.60
View in Google Scholar
Owusu Junior, P., Adam, A. M., Asafo-Adjei, E., Boateng, E., Hamidu, Z., & Awotwe, E. (2021a). Time-frequency domain analysis of investor fear and ex-pectations in stock markets of BRIC economies. Heliyon, 7(10), e08211. doi: 10.1016/j.heliyon.2021.e08211. DOI: https://doi.org/10.1016/j.heliyon.2021.e08211
View in Google Scholar
Owusu Junior, P., Frimpong, S., Adam, A. M., Agyei, S. K., Gyamfi, E. N., Agyapong, D., & Tweneboah, G. (2021b). COVID-19 as information transmit-ter to global equity markets: evidence from CEEMDAN-based transfer entropy approach. Mathematical Problems in Engineering, 2021, 8258778. doi: 10.115 5/2021/8258778. DOI: https://doi.org/10.1155/2021/8258778
View in Google Scholar
Peng, Y., & Ng, W. L. (2012). Analysing financial contagion and asymmetric mar-ket dependence with volatility indices via copulas. Annals of Finance, 8(1), 49?74. doi: 10.1007/s10436-011-0181-y. DOI: https://doi.org/10.1007/s10436-011-0181-y
View in Google Scholar
Ramsey, J. B., & Lampart, C. (1998). The decomposition of economic relation-ships by time scale using wavelets: expenditure and income. Studies in Nonlinear Dynamics & Econometrics, 3(1), 23?42. doi: 10.2202/1558-3708.1 039. DOI: https://doi.org/10.2202/1558-3708.1039
View in Google Scholar
Rényi, A. (1970). Probability theory. Amsterdam: North-Holland Publ. Co.
View in Google Scholar
Sarwar, G. (2019). Transmission of risk between US and emerging equity mar-kets. Emerging Markets Finance and Trade, 55(5), 1171?1183. doi: 10.1080/15 40496X.2018.1468248. DOI: https://doi.org/10.1080/1540496X.2018.1468248
View in Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379?423. doi: 10.1002/j.1538-7305.1948.tb01338.x. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
View in Google Scholar
Smales, L. A. (2022). Spreading the fear: the central role of CBOE VIX in global stock market uncertainty. Global Finance Journal, 51, 100679. doi: 10.1016/j. gfj.2021.100679. DOI: https://doi.org/10.1016/j.gfj.2021.100679
View in Google Scholar
Tissaoui, K., & Zaghdoudi, T. (2021). Dynamic connectedness between the US financial market and Euro-Asian financial markets: testing transmission of un-certainty through spatial regressions models. Quarterly Review of Economics and Finance, 81, 481?492. doi: 10.1016/j.qref.2020.10.020. DOI: https://doi.org/10.1016/j.qref.2020.10.020
View in Google Scholar
Torres, M. E., Colominas, M. A., Schlotthauer, G., & Flandrin, P. (2011). A com-plete ensemble empirical mode decomposition with adaptive noise. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 4144?4147. DOI: https://doi.org/10.1109/ICASSP.2011.5947265
View in Google Scholar
Valaskova, K., Kliestik, T., & Gajdosikova, D. (2021). Distinctive determinants of financial indebtedness: evidence from Slovak and Czech enterpris-es. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(3), 639?659. doi: 10.24136/eq.2021.023. DOI: https://doi.org/10.24136/eq.2021.023
View in Google Scholar
Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1), 1?41. doi: 10.1142/S1793536909000047. DOI: https://doi.org/10.1142/S1793536909000047
View in Google Scholar