Artificial intelligence-based predictive maintenance, time-sensitive networking, and big data-driven algorithmic decision-making in the economics of Industrial Internet of Things
DOI:
https://doi.org/10.24136/oc.2023.033Keywords:
artificial intelligence (AI), predictive maintenance (PM), Industrial Internet of Things (IIoT), big data; algorithmic decision-making, time-sensitive networking (TSN)Abstract
Research background: The article explores the integration of Artificial Intelligence (AI) in predictive maintenance (PM) within Industrial Internet of Things (IIoT) context. It addresses the increasing importance of leveraging advanced technologies to enhance maintenance practices in industrial settings.
Purpose of the article: The primary objective of the article is to investigate and demonstrate the application of AI-driven PM in the IIoT. The authors aim to shed light on the potential benefits and implications of incorporating AI into maintenance strategies within industrial environments.
Methods: The article employs a research methodology focused on the practical implementation of AI algorithms for PM. It involves the analysis of data from sensors and other sources within the IIoT ecosystem to present predictive models. The methods used in the study contribute to understanding the feasibility and effectiveness of AI-driven PM solutions.
Findings & value added: The article presents significant findings regarding the impact of AI-driven PM on industrial operations. It discusses how the implementation of AI technologies contributes to increased efficiency. The added value of the research lies in providing insights into the transformative potential of AI within the IIoT for optimizing maintenance practices and improving overall industrial performance.
Downloads
References
Adame, T., Carrascosa-Zamacois, M., & Bellalta, B. (2021). Time-sensitive networking in IEEE 802.11 be: On the way to low-latency WiFi 7. Sensors, 21(15), 4954. DOI: https://doi.org/10.3390/s21154954
View in Google Scholar
Ali, Z. A., Abduljabbar, Z. H., Taher, H. A., Sallow, A. B., & Almufti, S. M. (2023). Exploring the power of eXtreme gradient boosting algorithm in machine learning: A review. Academic Journal of Nawroz University, 12(2), 320–334. DOI: https://doi.org/10.25007/ajnu.v12n2a1612
View in Google Scholar
Alrumaih, T. N., Alenazi, M. J., AlSowaygh, N. A., Humayed, A. A., & Alablani, I. A. (2023). Cyber resilience in industrial networks: A state of the art, challenges, and future directions. Journal of King Saud University-Computer and Information Sciences, 35(9), 101781. DOI: https://doi.org/10.1016/j.jksuci.2023.101781
View in Google Scholar
Al-Saedi, I. R., Mohammed, F. M., & Obayes, S. S. (2017). CNC machine based on embedded wireless and Internet of Things for workshop development. In 2017 International conference on control, automation and diagnosis (ICCAD) (pp. 439–444). IEEE. DOI: https://doi.org/10.1109/CADIAG.2017.8075699
View in Google Scholar
Ammar, M., Haleem, A., Javaid, M., Bahl, S., Garg, S. B., Shamoon, A., & Garg, J. (2022). Significant applications of smart materials and Internet of Things (IoT) in the automotive industry. Materials Today: Proceedings, 68, 1542–1549. DOI: https://doi.org/10.1016/j.matpr.2022.07.180
View in Google Scholar
Aslam Zainudeen, N., & Labib, A. (2011). Practical application of the decision making grid (DMG). Journal of Quality in Maintenance Engineering, 17(2), 138–149. DOI: https://doi.org/10.1108/13552511111134574
View in Google Scholar
Bagheri, S., & Dijkstra, J (2023). Capabilities for data analytics in Industrial Internet of Things (IIOT). ECIS 2023 Research Papers, 416. Retrieved from https://aisel. aisnet.org/ecis2023_rp/416.
View in Google Scholar
Bautista, E., Sukhija, N., & Deng, S. (2022, September). Shasta log aggregation, monitoring and alerting in HPC environments with Grafana Loki and ServiceNow. In 2022 IEEE international conference on cluster computing (CLUSTER) (pp. 602–610). IEEE. DOI: https://doi.org/10.1109/CLUSTER51413.2022.00079
View in Google Scholar
Boulesteix, A. L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6), 493–507. DOI: https://doi.org/10.1002/widm.1072
View in Google Scholar
Chahed, H., Usman, M., Chatterjee, A., Bayram, F., Chaudhary, R., Brunstrom, A., Taheri, J., Bestoun, S. A., & Kassler, A. (2023). AIDA – A holistic AI-driven networking and processing framework for industrial IoT applications. Internet of Things, 22, 100805. DOI: https://doi.org/10.1016/j.iot.2023.100805
View in Google Scholar
Chakraborty, M., & Kundan, A. P. (2021). Grafana. In Monitoring cloud-native applications: Lead agile operations confidently using open source software (pp. 187–240). Berkeley, CA: Apress. DOI: https://doi.org/10.1007/978-1-4842-6888-9_6
View in Google Scholar
Christou, I. T., Kefalakis, N., Zalonis, A., Soldatos, J., & Bröchler, R. (2020). End-to-end industrial IoT platform for actionable predictive maintenance. IFAC-PapersOnLine, 53(3), 173–178. DOI: https://doi.org/10.1016/j.ifacol.2020.11.028
View in Google Scholar
Ciancio, V., Homri, L., Dantan, J. Y., Siadat, A., & Convain, P. (2022). Development of a flexible predictive maintenance system in the context of Industry 4.0. IFAC-PapersOnLine, 55(10), 1576–1581. DOI: https://doi.org/10.1016/j.ifacol.2022.09.615
View in Google Scholar
Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in Industry 4.0. Sustainability, 12(19), 8211. DOI: https://doi.org/10.3390/su12198211
View in Google Scholar
Click, C., Malohlava, M., Candel, A., Roark, H., & Parmar, V. (2017). Gradient boosting machine with H2O. Mountain View: H2O.ai.
View in Google Scholar
Devi, M., Dhaya, R., Kanthavel, R., Algarni, F., & Dixikha, P. (2020). Data science for Internet of Things (IoT). In Second international conference on computer networks and communication technologies: ICCNCT 2019 (pp. 60–70). Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-37051-0_7
View in Google Scholar
Drakaki, M., Karnavas, Y. L., Tziafettas, I. A., Linardos, V., & Tzionas, P. (2022). Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: State of the art survey. Journal of Industrial Engineering and Management (JIEM), 15(1), 31–57. DOI: https://doi.org/10.3926/jiem.3597
View in Google Scholar
Dubey, G. P., Stalin, S., Alqahtani, O., Alasiry, A., Sharma, M., Aleryani, A., Shukla, P. K., & Alouane, M. T. H. (2023). Optimal path selection using reinforcement learning based ant colony optimization algorithm in IoT-based wireless sensor networks with 5G technology. Computer Communications, 212, 377–389. DOI: https://doi.org/10.1016/j.comcom.2023.09.015
View in Google Scholar
Fecarotti, C., Andrews, J., & Pesenti, R. (2021). A mathematical programming model to select maintenance strategies in railway networks. Reliability Engineering & System Safety, 216, 107940. DOI: https://doi.org/10.1016/j.ress.2021.107940
View in Google Scholar
Ferreira, W., Cavalcante, C., & Do Van, P. (2021). Deep reinforcement learning-based maintenance decision-making for a steel production line. In B. Castanier, M. Cepin, D. Bigaud & C. Berenguer (Eds.). Proceedings of the 31st European safety and reliability conference, ESREL 2021. Singapore: Research Publishing.
View in Google Scholar
García, S. G., & García, M. G. (2019). Industry 4.0 implications in production and maintenance management: An overview. Procedia Manufacturing, 41, 415–422. DOI: https://doi.org/10.1016/j.promfg.2019.09.027
View in Google Scholar
Gerhard, T., Kobzan, T., Blöcher, I., & Hendel, M. (2019). Software-defined flow reservation: Configuring IEEE 802.1 Q time-sensitive networks by the use of software-defined networking. In 2019 24th IEEE international conference on emerging technologies and factory automation (ETFA) (pp. 216–223). IEEE. DOI: https://doi.org/10.1109/ETFA.2019.8869040
View in Google Scholar
Gerum, P. C. L., Altay, A., & Baykal-Gürsoy, M. (2019). Data-driven predictive maintenance scheduling policies for railways. Transportation Research Part C: Emerging Technologies, 107, 137–154. DOI: https://doi.org/10.1016/j.trc.2019.07.020
View in Google Scholar
Gokhale, S., Poosarla, R., Tikar, S., Gunjawate, S., Hajare, A., Deshpande, S., Gupta, S., & Karve, K. (2021). Creating Helm Charts to ease deployment of enterprise application and its related services in Kubernetes. In 2021 international conference on computing, communication and green engineering (CCGE) (pp. 1–5). IEEE. DOI: https://doi.org/10.1109/CCGE50943.2021.9776450
View in Google Scholar
Gugueoth, V., Safavat, S., & Shetty, S. (2023). Security of Internet of Things (IoT) using federated learning and deep learning-Recent advancements, issues and prospects. ICT Express, 9, 941–960. DOI: https://doi.org/10.1016/j.icte.2023.03.006
View in Google Scholar
Gundall, M., Huber, C., & Melnyk, S. (2021). Integration of IEEE 802.1 AS-based time synchronization in IEEE 802.11 as an enabler for novel industrial use cases. arXiv preprint arXiv:2101.02434.
View in Google Scholar
Gupta, V., Mitra, R., Koenig, F., Kumar, M., & Tiwari, M. K. (2023). Predictive maintenance of baggage handling conveyors using IoT. Computers & Industrial Engineering, 177, 109033. DOI: https://doi.org/10.1016/j.cie.2023.109033
View in Google Scholar
Hien, N. N., Lasa, G., Iriarte, I., & Unamuno, G. (2022). An overview of Industry 4.0 applications for advanced maintenance services. Procedia Computer Science, 200, 803–810.
View in Google Scholar
Hurtado, J., Salvati, D., Semola, R., Bosio, M., & Lomonaco, V. (2023). Continual learning for predictive maintenance: Overview and challenges. Intelligent Systems with Applications, 19, 200251. DOI: https://doi.org/10.1016/j.iswa.2023.200251
View in Google Scholar
Jurczuk, A., & Florea, A. (2022). Future-oriented digital skills for process design and automation. Human Technology, 18(2), 122–142. DOI: https://doi.org/10.14254/1795-6889.2022.18-2.3
View in Google Scholar
Khan, W. Z., Rehman, M. H., Zangoti, H. M., Afzal, M. K., Armi, N., & Salah, K. (2020). Industrial internet of things: Recent advances, enabling technologies and open challenges. Computers & Electrical Engineering, 81, 106522. DOI: https://doi.org/10.1016/j.compeleceng.2019.106522
View in Google Scholar
Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39, 261–283. DOI: https://doi.org/10.1007/s10462-011-9272-4
View in Google Scholar
Kumar, N., & Kumar, J. (2019). Efficiency 4.0 for Industry 4.0. Human Technology, 15(1), 55–78. DOI: https://doi.org/10.17011/ht/urn.201902201608
View in Google Scholar
Li, C., Chen, Y., & Shang, Y. (2022). A review of industrial big data for decision making in intelligent manufacturing. Engineering Science and Technology, an International Journal, 29, 101021. DOI: https://doi.org/10.1016/j.jestch.2021.06.001
View in Google Scholar
Maalouf, M. (2011). Logistic regression in data analysis: An overview. International Journal of Data Analysis Techniques and Strategies, 3(3), 281–299. DOI: https://doi.org/10.1504/IJDATS.2011.041335
View in Google Scholar
Miranda Filho, R., Lacerda, A., & Pappa, G. L. (2020). Explaining symbolic regression predictions. In 2020 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE. DOI: https://doi.org/10.1109/CEC48606.2020.9185683
View in Google Scholar
Nazemi Absardi, Z., & Javidan, R. (2023). A QoE-driven SDN traffic management for IoT-enabled surveillance systems using deep learning based on edge cloud computing. Journal of Supercomputing, 79, 19168–19193. DOI: https://doi.org/10.1007/s11227-023-05412-y
View in Google Scholar
Nguyen Ngoc, H., Lasa, G., & Iriarte, I. (2022). An overview of Industry 4.0 applications for advanced maintenance services. Procedia Computer Science, 200(10), 803–810. DOI: https://doi.org/10.1016/j.procs.2022.01.277
View in Google Scholar
Patil, S., & Patil, S. (2021). Linear with polynomial regression: Overview. International Journal of Applied Research, 7, 273–275. DOI: https://doi.org/10.22271/allresearch.2021.v7.i8d.8876
View in Google Scholar
Pinciroli, L., Baraldi, P., & Zio, E. (2023). Maintenance optimization in Industry 4.0. Reliability Engineering & System Safety, 234, 109204. DOI: https://doi.org/10.1016/j.ress.2023.109204
View in Google Scholar
Pinciroli, L., Baraldi, P., Ballabio, G., Compare, M., & Zio, E. (2021). Deep reinforcement learning based on proximal policy optimization for the maintenance of a wind farm with multiple crews. Energies, 14(20), 6743. DOI: https://doi.org/10.3390/en14206743
View in Google Scholar
Roy, A., & Chakraborty, S. (2023). Support vector machine in structural reliability analysis: A review. Reliability Engineering & System Safety, 233, 109126. DOI: https://doi.org/10.1016/j.ress.2023.109126
View in Google Scholar
Shvets, Y., & Hanák, T. (2023). Use of the Internet of Things in the construction industry and facility management: Usage examples overview. Procedia Computer Science, 219, 1670–1677. DOI: https://doi.org/10.1016/j.procs.2023.01.460
View in Google Scholar
Siraskar, R., Kumar, S., Patil, S., Bongale, A., & Kotecha, K. (2023). Reinforcement learning for predictive maintenance: A systematic technical review. Artificial Intelligence Review, 56, 12885–12947. DOI: https://doi.org/10.1007/s10462-023-10468-6
View in Google Scholar
Soori, M., Arezoo, B., & Dastres, R. (2023). Internet of Things for smart factories in Industry 4.0, a review. Internet of Things and Cyber-Physical Systems, 3, 192–204. DOI: https://doi.org/10.1016/j.iotcps.2023.04.006
View in Google Scholar
Trifonov, H., & Heffernan, D. (2023). OPC UA TSN: A next-generation network for Industry 4.0 and IIoT. International Journal of Pervasive Computing and Communications, 19(3), 386–411. DOI: https://doi.org/10.1108/IJPCC-07-2021-0160
View in Google Scholar
Turnbull, J. (2018). Monitoring with Prometheus. Turnbull Press.
View in Google Scholar
Usman, M., Ferlin, S., Brunstrom, A., & Taheri, J. (2022). A survey on observability of distributed edge & container-based microservices. IEEE Access, 10, 86904–86919. DOI: https://doi.org/10.1109/ACCESS.2022.3193102
View in Google Scholar
Usman, M., Risdianto, A. C., Han, J., & Kim, J. (2019). Interactive visualization of SDN-enabled multisite cloud playgrounds leveraging smartx multiview visibility framework. Computer Journal, 62(6), 838–854. DOI: https://doi.org/10.1093/comjnl/bxy103
View in Google Scholar
Viera-Martin, E., Gómez-Aguilar, J. F., Solís-Pérez, J. E., Hernández-Pérez, J. A., & Escobar-Jiménez, R. F. (2022). Artificial neural networks: A practical review of applications involving fractional calculus. European Physical Journal Special Topics, 231(10), 2059–2095. DOI: https://doi.org/10.1140/epjs/s11734-022-00455-3
View in Google Scholar
Wolfartsberger, J., Zenisek, J., & Wild, N. (2020). Data-driven maintenance: Combining predictive maintenance and mixed reality-supported remote assistance. Procedia Manufacturing, 45, 307–312. DOI: https://doi.org/10.1016/j.promfg.2020.04.022
View in Google Scholar
Zezulka, F., Marcon, P., Bradac, Z., Arm, J., & Benesl, T. (2019). Time-sensitive networking as the communication future of industry 4.0. IFAC-PapersOnLine, 52(27), 133–138. DOI: https://doi.org/10.1016/j.ifacol.2019.12.745
View in Google Scholar
Zhang, J., Liu, C., Li, X., Zhen, H. L., Yuan, M., Li, Y., & Yan, J. (2023). A survey for solving mixed integer programming via machine learning. Neurocomputing, 519, 205–217. DOI: https://doi.org/10.1016/j.neucom.2022.11.024
View in Google Scholar