Dynamic safety management model for rail traffic control





risk, safety management, rail traffic control


In rail transport, increasing emphasis has been placed in recent years on improving safety levels. Therefore, more requirements and legal documents require risk analyses to be carried out at various stages of investment implementation. One of the leading legal documents that introduce the obligation to monitor risk is Directive (EU) 2016/798 of the European Parliament and of the Council of 11 May 2016 on railway safety and Commission Implementing Regulation (EU) No 402/2013 of 30 April 2013 on the common safety method for risk evaluation and assessment and re-pealing Regulation (EC) No 352/2009. Additionally, for traffic control systems, the requirements of CENELEC standards are mandatory. These documents present the subject of safety level and show its relation with the safety targets defined in the railway system, including the different ways of measuring them. Methods are also available to analyse the safety level of railway system components in detail, both at the level of individual components, subsystems, and the whole national railway system. However, after conducting an in-depth analysis of the literature, the authors of the article indicate that these methods are not consistent with each other. There is no method defined to present the direct relation of the safety level of the components of the system on the achievement of safety targets for the national railway system. The research and analysis aimed to define an approach, a method that would meet all legal requirements but at the same time would allow to clearly and reliably determine the safety level of the railway system. To define a unified approach, the authors of the article propose to develop a model of a dynamic object - a railway system safety model, which has also been verified on accurate safety data in rail transport in recent years. This model organises the process of safety management on railways and allows to determine values influencing the achievement of safety targets on an assumed level.


An M., Lin W., Huang S. (2013) An Intelligent Railway Safety Risk Assessment Support System for Railway Operation and Maintenance Analysis, The Open Transportation Journal, 7(1), 27-42. https://doi.org/10.2174/1874447801307010027.

Berrado A., El-Miloudi E.-K., Cherkaoui A., Khaddour M. (2011) A Framework for Risk Management in Railway Sector: Application to Road-Rail Level Crossings, The Open Transportation Journal, 5(1), 34-44. https://doi.org/10.2174/1874447801105010034.

Bezpieczny przejazd - kampania społeczna Szlaban na ryzyko!, available at https://www.bezpieczny-przejazd.pl/o-kampanii/statystyki.

BG PW - Modeling of Dynamic Object Systems, available at https://primo-48tuw.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=48TUW_ejournals2560000000282894&context=L&vid=48TUW_VIEW&lang=pl_PL&search_scope=primo_all_scope&adaptor=Local%20Search%20Engine&tab=default_tab&query=any,contains,dynamic%20objects&offset=0.

Chruzik K. (2014) Wspólne metody bezpieczeństwa w transporcie kolejowym Europy - teoria i praktyka, TTS Technika Transportu Szynowego, 21(9).

Commission Implementing Regulation (EU) 2015/1136 of 13 July 2015 amending Implementing Regulation (EU) No 402/2013 on the common safety method for risk evaluation and assessment, (n.d.).

Commission Implementing Regulation (EU) No 402/2013 of 30 April 2013 on the common safety method for risk evaluation and assessment and repealing Regulation (EC) No 352/2009, (n.d.).

Commission Regulation (EU) 2016/919, Commission Regulation (EU) 2016/919 of 27 May 2016 on the Technical Specification for Interoperability Relating to the ‘Control-Command & Signalling’ Subsystems of the Rail System in the European Union.

Directive (EU) 2016/798, Directive (EU) 2016/798 of the European Parliament and of the Council of 11 May 2016 on railway safety, (n.d.).

Du, L. Xie, C. Du, (2002) H-infinity Control and Filtering of Two-Dimensional Systems, Springer Berlin / Heidelberg, Berlin, Heidelberg.

EN 50126-1:2017 - Railway Applications - The Specification and Demonstration of Reliability, Availability, Maintainability and Safety (RAMS) - Part 1: Generic RAMS Process, iTeh Standards Store, available at https://standards.iteh.ai/catalog/standards/clc/e5456892-eb2c-437e-8c4b-91c08007f0b4/en-50126-1-2017.

EN 50129:2003 - Railway applications - Communication, signalling and processing systems - Safety, available at https://standards.iteh.ai/catalog/standards/clc/42c2dcf7-c764-45af-b4a7-a015ecfff75d/en-50129-2003.

European Union Agency for Railways, Guidance for safety certification and supervision, Safety management system requirements for safety certification or safety authorization. 2018.

European Union Agency for Railways, Note of Safety Targets for stakeholder discussion. 2019.

European Union Agency For Railways, Report 2017 assessment of achievement of safety targets, Version 1.0. 2017.

Europejska Agencja Kolejowa, Przykłady oceny ryzyka i ewentualnych narzędzi pomocniczych do rozporządzenia w sprawie wspólnych metod oceny bezpieczeństwa (CSM), ERA/GUI/02-2008/SAF, wersja 1.1. 2009.

Flavio Vismari L., Camargo Junior J.B. (2011) A safety assessment methodology applied to CNS/ATM-based air traffic control system, Reliability Engineering and System Safety, 96(7), 727–738. https://doi.org/10.1016/j.ress.2011.02.007.

Helak M., Smoczyński P., Kadziński, A. (2019) Implementation of the common safety method in the European Union railway transportation, Scientific Journal of Silesian University of Technology. Series Transport, 102, 65–72. https://doi.org/10.20858/sjsutst.2019.102.5.

Hessami A. G. (2015) A Systems View of Railway Safety and Security, Railway Research - Selected Topics on Development, Safety and Technology. https://doi.org/10.5772/62080.

Hwang J.-G., Jo H.-J., Yoon Y.-G. (2008) Safety assessment methodology of railway signalling systems in Korea, Risk Analysis VI, WIT Press, Cephalonia, Greece, 503-511. https://doi.org/10.2495/RISK080491.

Jabłoński A., Jabłoński M. (2018) Mechanizmy efektywnego zarządzania bezpieczeństwem w transporcie kolejowym, ISBN 978-83-7556-983-4, CeDeWu Sp. z o. o., Warszawa.

Jamroz K., et al. (2010) Koncepcja zintegrowanego Systemu bezpieczeństwa transportu, Tom III, Koncepcja Zintegrowanego Systemu Bezpieczeństwa Transportu w Polsce, WKŁ, Warszawa.

Jovicic D. (2014) Explanatory note on the CSM Assessment Body referred to in Regulation (EU) N°402/2013(1) and in OTIF UTP GEN-G of 1.1.2016(2) on the Common Safety Method (CSM) for risk assessment, 24.

Kaczorek T. (1997) Teoria sterowania, PWN.

Knorn S., Middleton R.H., (2016) Asymptotic and exponential stability of nonlinear two-dimensional continuous–discrete Roesser models, Systems & Control Letters , 93, 35–42. https://doi.org/10.1016/j.sysconle.2016.03.004.

Kobaszyńska-T. A. (2017) Risk management at level crossings, Poznań University of Technology, Faculty of Machines and Transportation.

Kritzinger D. (2017) 2- Safety assessment strategy (with Goal Structuring Notation), Aircraft System Safety (Assessments for Initial Airworthiness Certification), ISBN 978-0-08-100889-8, 23-35. https://doi.org/10.1016/B978-0-08-100889-8.00002-7.

Leitner,B. (2017) A General Model for Railway Systems Risk Assessment with the Use of Railway Accident Scenarios Analysis, Procedia Engineering, 187, 150–159. https://doi.org/10.1016/j.proeng.2017.04.361.

Luber M., Arras K.O., Plagemann C., Burgard W. (2009) Classifying dynamic objects: An unsupervised learning approach, Autonomous Robots, 26(2), 141–151. https://doi.org/10.1007/s10514-009-9112-4.

Mahboob Q., Zio E. (2018) Handbook of RAMS in Railway Systems: Theory and Practice, Edited by Qamar Mahboob, Enrico Zio Routledge, CRC Press, ISBN 9781138035126.

Morant A. (2015) Dependability and safety evaluation of railway signalling systems based on field data, PhD in Operation and Maintenance Engineering. https://doi.org/10.13140/RG.2.1.2444.9365.

Morant A., Gustafson A., Söderholm P., Larsson-Kråik P.-O., Kumar U. (2016) Safety and availability evaluation of railway operation based on the state of signalling systems, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231(2), 226-238. https://doi.org/10.1177/0954409715624466.

Myklebust T., Stålhane T. (2018) The Agile Safety Case, ISBN 978-3-319-70264-3, ISBN 978-3-319-70265-0 (eBook), Springer Internat. Publishing. https://doi.org/10.1007/978-3-319-70265-0.

Ouedraogo K.A., et al. (2018) Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems, Risk Analysis, 38(8), 1634-1655. https://doi.org/10.1111/risa.12972.

Petit-Doche M., Obeo F.T., Belmonte F. (2012) Interoperability between Risk Assessment and System Design for Railway Safety Critical Signalling System Development, in Embedded Real Time Software and Systems (ERTS2012), Toulouse, France.

Pieniak-Lendzion K., Stefaniak R. (2019) Selected issues in rail transport safety in Poland, Scientific Papers of Silesian University of Technology Organisation and Management Series, 134, 203-213, http://dx.doi.org/10.29119/1641-3466.2019.134.16.

Read G.J.M., Naweed A., Salmon P.M. (2019) Complexity on the rails: A systems-based approach to understanding safety management in rail transport, Reliability Engineering & System Safety, 188, 352–365. https://doi.org/10.1016/j.ress.2019.03.038.

Roesser R. (1975) A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control, 20(1), 1-10. https://doi.org/10.1109/TAC.1975.1100844.

Rogers E., et al. (2015) Multidimensional control systems: case studies in design and evaluation, Multidim Syst Sign Process, 26(4), 895-939. https://doi.org/10.1007/s11045-015-0341-8.

Schutte J., Casir C., Eckel A. (2005) Derivation of common safety targets for the European railways, WIT Transactions on The Built Environment, https://doi.org/10.2495/SAFE050241.

Skogstad O., Experiences with Safety Case Documentation According to the CENELEC Railway Safety Norms, Towards System Safety, Springer. https://doi.org/10.1007/978-1-4471-0823-8_2.

Smith P. (2016) Safety Case for the Introduction of New Technology into an Existing Railway System, Imperial College London, Department of Civil and Environmental Engineering, Centre for Transport Studies. Civil and Environmental Engineering PhD these. https://doi.org/10.25560/45313.

Spriggs J. (2012) GSN - The Goal Structuring Notation: A Structured Approach to Presenting Arguments, Springer-Verlag London Limited. https://doi.org/10.1007/978-1-4471-2312-5.

Szmel D., Zabłocki W., Ilczuk P., Kochan A. (2019) Method for Selecting the Safety Integrity Level for the Control-Command and Signaling Functions, Sustainability, 11(24):7062. https://doi.org/10.3390/su11247062.

Szopa T. (2009) Niezawodność i bezpieczeństwo, Wydanie I., ISBN 9788372078186, OWPW, W-wa.

T. Lecomte, R. Pinger, and A. Romanovsky (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification: First International Conference, RSSRail 2016, Paris, France, Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-33951-1.

The State Committee for Railway Accidents, Ministry of Infrastructure and Construction, Annual Reports for 2011–2020 on the Activities of the State Committee for Railway Accidents, (2020).

Urząd Transportu Kolejowego, (2015) Ekspertyza dotycząca praktycznego stosowania przez podmioty sektora kolejowego wymagań wspólnej metody bezpieczeństwa w zakresie oceny ryzyka (CSM RA) opracowana w formie przewodnika.

Urząd Transportu Kolejowego, (2019) Sprawozdanie ze stanu bezpieczeństwa ruchu kolejowego - 2019 r., Urząd Transportu Kolejowego, available at https://utk.gov.pl/pl/dokumenty-i-formularze/opracowania-urzedu-tran/16257,Sprawozdanie-ze-stanu-bezpieczenstwa-ruchu-kolejowego-2019-r.html.

Wang R., Guiochet J., Motet G., Schön W. (2017) Modelling Confidence in Railway Safety Case, Safety Science, 110. https://doi.org/10.1016/j.ssci.2017.11.012.

Wigger P. (2012) MODSafe-Modular Urban Transport Safety and Security Analysis, Procedia - Social and Behavioral Sciences, 48, 2616-2625. https://doi.org/10.1016/j.sbspro.2012.06.1232.

Wu L., Wang Z. (2015) Filtering and Control for Classes of Two-Dimensional Systems, Series: Studies in Systems, Decision and Control, Vol. 18, ISBN 978-3-319-13697-4, Springer International Publishing. https://doi.org/10.1007/978-3-319-13698-1.