Application of TKEO in the process of automatic balancing of the rotor

Authors

  • Jędrzej Blaut AGH University of Science and Technology in Cracow
  • Rafał Rumin AGH University of Science and Technology in Cracow
  • Jacek Cieślik AGH University of Science and Technology in Cracow
  • Paweł Hyla AGH University of Science and Technology in Cracow
  • Janusz Szpytko AGH University of Science and Technology in Cracow

DOI:

https://doi.org/10.24136/atest.2019.028

Keywords:

TKEO, active vibration control, rotating machinery, balancing rotor, controller, rotor dynamics

Abstract

The article presents an example of application of the Teager-Kaiser Energy Operator in automatic rotor balancing. The Teagear Kaiser Energy Operator is a signal analysis method, which allows for some mechanical objects to estimate energy changes in Newtonian terms by means of a displacement signal. Rotors are a structural element that rotates around an axis. Traditional balancing of the rotors is based on the introduction of correction masses, the aim of which is to reduce vibrations and noise during machine operation. Traditional balancing of the rotors is also possible. It can be realized by a system of correction masses with variable distance from the axis of rotation. The change of the correction mass distance from the axis of rotation influences the change of inertia of the object and thus reduces the unbalance. Depending on the design of the device, the modernization may assume extension or replacement of individual elements. Improvement of the operation of the device requires selection of elements depending on the overall interference in the operation of the machine and the impact on the operation of the entire device. The presented original method of automatic unbalance control with the use of the Energy Operator with the selection of parameters has been performed on a real laboratory stand..

Downloads

Download data is not yet available.

References

Alsabagh, Abdel, et al. "A Review of the Effects of Ice Accretion on the Structural Behavior of Wind Turbines." Wind Engineering 37.1 (2013): 59-70.

Antoniadou, I., Manson, G., Staszewski, W., Barszcz, T. i Wordena, K. 2015, A time–frequency analysis approach for condition monitoring of a wind turbine gearbox under varying load conditions. Mechanical Systems and Signal Processing, strony 188–216.

Blaut J., Korbiel T., Batko W. 2016. Application of the Teager-Kaiser energy operator to detect instability of a plain bearing. Dia-gnostyka 17

F. C. Nelson, A Brief History of Early Rotor Dynamics, J. of Sound and Vib., 37 no 6, (2003).

Gretchen B. Murri, Jeffery R. Schaffb, Fatigue Life Methodology For Tapered Hybrid Composite Flexbeams.

Henríquez, P., White, P., Alonso, J., Ferrer, C. i Travieso, C. 2011. Application of Teager-Kaiser Energy Operator to the Analysis of Degradation of a Helicopter Input Pinion Bearing. The International Conference Surveillance 6.

J.P. Vanyo, Rotating Fluids in Engineering and Science, Dover Publications, (1993).

Maissan, T.M., The Effects of the Black Blades on Surface Temperatures for Wind Turbines, in W.A.T. J., Editor 2001, Université du Québec à Rimouski: Canada.

Maragos P., Kaiser J.F., Quatieri T. F.. 1993. Energy separation in signal modulations with application to speech analysis. IEEE Transactions on Signal Processing, Vol.41, No.10,1993,pp.3024 – 3051

R. Gryboś, Podstawy mechaniki płynów. Cz. 1, Kinematyka, dynamika cieczy i gazów, hydrostatyka, Cz. 2, Turbulencja, metody numeryczne, zastosowania techniczne, Wyd. Naukowe PWN, Warszawa, (1998).

R. Puzyrewski, J. Sawicki, Podstawy mechaniki płynów i hydrauliki, Wydaw. Naukowe PWN, (2000).

R. Rumin and J. Cieślik, System for Automatic Rotor Balancing Using a Continuous Change of the Correction Mass Distribution, Vibrations in Physical Systems, vol. 24, (2010), 337-342.

Rumin R., Cieślik J. 2010. Układ do automatycznego wyważania wirników przy pomocy ciągłej zmiany rozkładu masy korekcyjnej. Drgania w Układach Fizycznych vol. 24: 337–342

Rumin R., Cieślik J. 2011, Vibration Control of Rotating Machinery. Conference Active Noise and Vibration Control Methods, Krakow-Wojanow, Poland.

Rumin R., Cieślik J., Mańka M., Szlachetka A., Maliszewski M. 2012. Układ do redukcji drgań urządzeń wirujących. Zgłoszenie patentowe.

S. V. Pantankar and D. B. Spalding, A calculation processure for heat, mass and momentum transfer in the three-dimensional parabolic flows, International Journal of Heat Mass Transfer, 15, (1972), 1787-1806.

S. Zhou and J. Shi , Active Balancing and Vibration Control of Rotating Machinery: A Survey, The Shock and Vibration Digest (2001).

T. C. Papanastasiou, G. C. Georgiou, A. N. Alexandrou, Viscous Fluid Flow: Chapter 6 - Unidirectional Flows, CRC Press, (2000).

Teager , H. i Teager, S. 1983. A Phenomenological Model for Vowel Production in the Vocal Tract. San Diego: College-Hill Press.

Vakman D.. 1996. On the analytic signal, the TeagerKaiser energy algorithm, and other methods for defining amplitude and frequency. IEEE Transactions on Signal Processing, Vol.44, No.4, ,pp.791– 797

Downloads

Published

2019-02-28

How to Cite

Blaut, J., Rumin, R., Cieślik, J., Hyla, P., & Szpytko, J. (2019). Application of TKEO in the process of automatic balancing of the rotor. AUTOBUSY – Technika, Eksploatacja, Systemy Transportowe, 20(1-2), 161–166. https://doi.org/10.24136/atest.2019.028

Issue

Section

Articles