Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies
DOI:
https://doi.org/10.24136/eq.2022.032Keywords:
volatility models, high-low range, robust estimation, invasion of Ukraine, warAbstract
Research background: The Russian invasion on Ukraine of February 24, 2022 sharply raised the volatility in commodity and financial markets. This had the adverse effect on the accuracy of volatility forecasts. The scale of negative effects of war was, however, market-specific and some markets exhibited a strong tendency to return to usual levels in a short time.
Purpose of the article: We study the volatility shocks caused by the war. Our focus is on the markets highly exposed to the effects of this conflict: the stock, currency, cryptocurrency, gold, wheat and crude oil markets. We evaluate the forecasting accuracy of volatility models during the first stage of the war and compare the scale of forecast deterioration among the examined markets. Our long-term purpose is to analyze the methods that have the potential to mitigate the effect of forecast deterioration under such circumstances. We concentrate on the methods designed to deal with outliers and periods of extreme volatility, but, so far, have not been investigated empirically under the conditions of war.
Methods: We use the robust methods of estimation and a modified Range-GARCH model which is based on opening, low, high and closing prices. We compare them with the standard maximum likelihood method of the classic GARCH model. Moreover, we employ the MCS (Model Confidence Set) procedure to create the set of superior models.
Findings & value added: Analyzing the market specificity, we identify both some common patterns and substantial differences among the markets, which is the first comparison of this type relating to the ongoing conflict. In particular, we discover the individual nature of the cryptocurrency markets, where the reaction to the outbreak of the war was very limited and the accuracy of forecasts remained at the similar level before and after the beginning of the war. Our long-term contribution are the findings about suitability of methods that have the potential to handle the extreme volatility but have not been examined empirically under the conditions of war. We reveal that the Range-GARCH model compares favorably with the standard volatility models, even when the latter are evaluated in a robust way. It gives valuable implication for the future research connected with military conflicts, showing that in such period gains from using more market information outweigh the benefits of using robust estimators.
Downloads
References
Adekoya, O. B., Oliyide, J. A., Yaya, O. S., & Al-Faryan, M. A. S. (2022). Does oil connect differently with prominent assets during war? Analysis of intra-day da-ta during the Russia-Ukraine saga. Resources Policy, 77, 102728. doi: 10.1016/j.resourpol.2022.102728. DOI: https://doi.org/10.1016/j.resourpol.2022.102728
View in Google Scholar
Alam, M. K., Mosab, I. T., Mabruk, B., Sanjeev, K., & Suhaib, A. (2022). The im-pacts of the Russia?Ukraine invasion on global markets and commodities: a dynamic connectedness among G7 and BRIC markets. Journal of Risk and Financial Management, 15(8), 352. doi: 10.3390/jrfm15080352. DOI: https://doi.org/10.3390/jrfm15080352
View in Google Scholar
Alizadeh, S., Brandt, M., & Diebold, F. X. (2002). Range-based estimation of sto-chastic volatility models. Journal of Finance, 57, 1047?1091. doi: 10.1111 /1540-6261.00454. DOI: https://doi.org/10.1111/1540-6261.00454
View in Google Scholar
Andersen, T. G., Bollerslev, T., & Diebold, F. X. (2007). Roughing it up: including jump components in the measurement, modeling, and forecasting of return volatility. Review of Economics and Statistics, 89(4), 701?720. doi: 10.1162/rest .89.4.701. DOI: https://doi.org/10.1162/rest.89.4.701
View in Google Scholar
Antonakakis, N., Gupta, R., Kollias, C., & Papadamou, S. (2017). Geopolitical risks and the oil-stock nexus over 1899-2016. Finance Research Letters, 23, 165?173. doi: 10.1016/j.frl.2017.07.017. DOI: https://doi.org/10.1016/j.frl.2017.07.017
View in Google Scholar
Bauwens, L., & Storti, G. (2009). A component GARCH model with time varying weights. Studies in Nonlinear Dynamics and Econometrics, 13(2), 1. doi: 10.22 02/1558-3708.1512. DOI: https://doi.org/10.2202/1558-3708.1512
View in Google Scholar
Bariviera, A. F., & Merediz-Sol?, I. (2021). Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis. Journal of Economic Surveys, 35(2), 377?407. doi: 10.1111/joes.12412. DOI: https://doi.org/10.1111/joes.12412
View in Google Scholar
Bollerslev, T. (1986). Generalised autoregressive conditional heteroscedasticity. Journal of Econometrics, 31, 307?327. doi: 10.1016/0304-4076(86)90063-1. DOI: https://doi.org/10.1016/0304-4076(86)90063-1
View in Google Scholar
Bollerslev, T. (1987). A conditionally heteroskedastic time series model for specu-lative prices and rates of return. Review of Economics and Statistics, 69(3), 542?547. doi: 10.2307/1925546. DOI: https://doi.org/10.2307/1925546
View in Google Scholar
Boubaker, S., Goodell, J. W., Pandey, D. K., & Kumari, V. (2022). Heterogeneous impacts of wars on global equity markets: evidence from the invasion of Ukraine. Finance Research Letters, 48, 102934. doi: 10.1016/j.frl.2022.1029 34. DOI: https://doi.org/10.1016/j.frl.2022.102934
View in Google Scholar
Boudt, K., Daníelsson, J., & Laurent, S. (2013). Robust forecasting of dynamic conditional correlation GARCH models. International Journal of Forecasting, 29(2), 244?57. doi: 10.1016/j.ijforecast.2012.06.003. DOI: https://doi.org/10.1016/j.ijforecast.2012.06.003
View in Google Scholar
Boungou, W., & Yatié, A. (2022). The impact of the Ukraine?Russia war on world stock market returns. Economics Letters, 215, 110516. doi: 10.1016/j.econlet. 2022.110516. DOI: https://doi.org/10.1016/j.econlet.2022.110516
View in Google Scholar
Brandt, M., & Jones, C. (2006). Volatility forecasting with range-based EGARCH models. Journal of Business and Economic Statistics, 24, 470?486. doi: 10.119 8/073500106000000206. DOI: https://doi.org/10.1198/073500106000000206
View in Google Scholar
Brune, A., Hens, T., Rieger, M. O., & Wang, M. (2015). The war puzzle: contradic-tory effects of international conflicts on stock markets. International Review of Economics, 62(1), 1?21. doi: 10.1007/s12232-014-0215-7. DOI: https://doi.org/10.1007/s12232-014-0215-7
View in Google Scholar
Carnero, M. A., Pe?a, D., & Ruiz, E. (2007). Effects of outliers on the identification and estimation of GARCH models. Journal of Time Series Analysis, 28(4), 471?97. doi: 10.1111/j.1467-9892.2006.00519.x. DOI: https://doi.org/10.1111/j.1467-9892.2006.00519.x
View in Google Scholar
Carnero, M. A., Pe?a, D., & Ruiz, E. (2012). Estimating GARCH volatility in the presence of outliers. Economics Letters, 114(1), 86?90. doi: 10.1016/j.econlet .2011.09.023. DOI: https://doi.org/10.1016/j.econlet.2011.09.023
View in Google Scholar
Catalán, B., & Trívez, F. J. (2007). Forecasting volatility in GARCH models with additive outliers. Quantitative Finance, 7(6), 591?96. doi: 10.1080/146976806 01116872. DOI: https://doi.org/10.1080/14697680601116872
View in Google Scholar
Charles, A. (2008). Forecasting volatility with outliers in GARCH models. Journal of Forecasting, 27(7), 551?65. doi: 10.1002/for.1065. DOI: https://doi.org/10.1002/for.1065
View in Google Scholar
Charles, A., & Darné, O. (2005). Outliers and GARCH models in financial data. Economics Letters, 86(3), 347?352. doi: 10.1016/j.econlet.2004.07.019. DOI: https://doi.org/10.1016/j.econlet.2004.07.019
View in Google Scholar
Charles, A., & Darne, O. (2014). Large shocks in the volatility of the Dow Jones Industrial Average Index: 1928?2013. Journal of Banking and Finance, 43, 188?199. doi: 10.1016/j.jbankfin.2014.03.022. DOI: https://doi.org/10.1016/j.jbankfin.2014.03.022
View in Google Scholar
Chen, C. W. S., Gerlach, R., & Lin, E. M. H. (2008). Volatility forecasting using threshold heteroskedastic models of the intra-day range. Computational Statistics and Data Analysis, 52(6), 2990?3010. doi: 10.1016/j.csda.2007.08. 002. DOI: https://doi.org/10.1016/j.csda.2007.08.002
View in Google Scholar
Chortane, S. G., & Pandey, D. K. (2022). Does the Russia-Ukraine war lead to currency asymmetries? A US dollar tale. Journal of Economic Asymmetries, 26, e00265. doi: 10.1016/j.jeca.2022.e00265. DOI: https://doi.org/10.1016/j.jeca.2022.e00265
View in Google Scholar
Chou, R. Y. (2005). Forecasting financial volatilities with extreme values: the con-ditional autoregressive range (CARR) Model. Journal of Money, Credit and Banking, 37(3), 561?582. doi: 10.1353/mcb.2005.0027. DOI: https://doi.org/10.1353/mcb.2005.0027
View in Google Scholar
Chou, R. Y., Chou, H. C., & Liu, N. (2015). Range volatility: a review of models and empirical studies. In C. F. Lee & J. C. Lee (Eds.). Handbook of financial econometrics and statistics (pp. 2029?2050). New York: Springer. DOI: https://doi.org/10.1007/978-1-4614-7750-1_74
View in Google Scholar
Choudhry, T. (1997). Stock return volatility and World War II: evidence from GARCH and GARCH-X models. International Journal of Finance and Economics, 2(1), 17?28. doi: 10.1002/(SICI)1099-1158(199701)2:1<17::AID-IJFE36>3.0.CO;2-S. DOI: https://doi.org/10.1002/(SICI)1099-1158(199701)2:1<17::AID-IJFE36>3.0.CO;2-S
View in Google Scholar
Choudhry, T. (2010). World War II events and the Dow Jones Industrial Index. Journal of Banking and Finance, 34(5), 1022?1031. doi: 10.1016/j.jbankfin.2 009.11.004. DOI: https://doi.org/10.1016/j.jbankfin.2009.11.004
View in Google Scholar
Corbet, S., Lucey, B., Urquhart, A., & Yarovaya, L. (2019). Cryptocurrencies as a financial asset: a systematic analysis. International Review of Financial Analysis, 62, 182?99. doi: 10.1016/j.irfa.2018.09.003. DOI: https://doi.org/10.1016/j.irfa.2018.09.003
View in Google Scholar
Degiannakis, S., & Livada, A. (2013). Realized volatility or price range: evidence from a discrete simulation of the continuous time diffusion process. Economic Modelling, 30, 212?216. doi: 10.1016/j.econmod.2012.09.027. DOI: https://doi.org/10.1016/j.econmod.2012.09.027
View in Google Scholar
Fang, Y., & Shao, Z. (2022). The Russia-Ukraine conflict and volatility risk of commodity markets. Finance Research Letters, 50, 103264. doi: 10.1016/j.frl. 2022.103264. DOI: https://doi.org/10.1016/j.frl.2022.103264
View in Google Scholar
Fiszeder, P., & Fałdziński, M. (2019). Improving forecasts with the co-range dy-namic conditional correlation model. Journal of Economic Dynamics and Control, 108, 103736. doi: 10.1016/j.jedc.2019.103736. DOI: https://doi.org/10.1016/j.jedc.2019.103736
View in Google Scholar
Fiszeder, P., Fałdziński, M., & Molnár, P. (2019). Range-based DCC models for covariance and Value-at-Risk forecasting. Journal of Empirical Finance, 54, 58?76. doi: 10.1016/j.jempfin.2019.08.004. DOI: https://doi.org/10.1016/j.jempfin.2019.08.004
View in Google Scholar
Fiszeder, P., & Perczak, G. (2016). Low and high prices can improve volatility fore-casts during the turmoil period. International Journal of Forecasting, 32(2), 398?410. doi: 10.1016/j.ijforecast.2015.07.003. DOI: https://doi.org/10.1016/j.ijforecast.2015.07.003
View in Google Scholar
Floros, C., Gkillas, K., Konstantatos, C., & Tsagkanos, A. (2020). Realized measures to explain volatility changes over time. Journal of Risk and Financial Management, 13(6), 125. doi: 10.3390/jrfm13060125. DOI: https://doi.org/10.3390/jrfm13060125
View in Google Scholar
Franses, P. H., & Ghijsels, H. (1999). Additive outliers, GARCH and forecasting volatility. International Journal of Forecasting, 15(1), 1?9. doi: 10.1016/S016 9-2070(98)00053-3. DOI: https://doi.org/10.1016/S0169-2070(98)00053-3
View in Google Scholar
Frey, B. S., & Kucher, M. (2000). World War II as reflected on capital markets. Economics Letters, 69, 187?191. doi: 10.1016/S0165-1765(00)00269-X. DOI: https://doi.org/10.1016/S0165-1765(00)00269-X
View in Google Scholar
Frey, B. S., & Kucher, M. (2001). Wars and markets: how bond values reflect the Second World War. Economica, 68(271), 317?333. doi: 10.1111/1468-0335.0 0249. DOI: https://doi.org/10.1111/1468-0335.00249
View in Google Scholar
Garman, M. B., & Klass, M. J. (1980). On the estimation of security price volatili-ties from historical data. Journal of Business, 53(1), 67?78. doi: 10.1086/29 6072. DOI: https://doi.org/10.1086/296072
View in Google Scholar
Gkillas, K., Konstantatos, C., & Siriopoulos, C. (2021). Uncertainty due to infec-tious diseases and stock-bond correlation. Econometrics, 9(2), 17. doi: 10.3390/ econometrics9020017. DOI: https://doi.org/10.3390/econometrics9020017
View in Google Scholar
Grane, A., & Veiga, H. (2010). Wavelet-based detection of outliers in financial time series. Computational Statistics and Data Analysis, 54(11), 2580?2593. doi: 10.1016/j.csda.2009.12.010. DOI: https://doi.org/10.1016/j.csda.2009.12.010
View in Google Scholar
Gregory, A. W., & Reeves, J. J. (2010). Estimation and inference in ARCH models in the presence of outliers. Journal of Financial Econometrics, 8(4), 547?549. doi: 10.1093/jjfinec/nbq028. DOI: https://doi.org/10.1093/jjfinec/nbq028
View in Google Scholar
Guidolin, M., & La Ferrara, E. (2010). The economic effects of violent conflict: evidence from asset market reactions. Journal of Peace Research, 47(6), 671?684. doi: 10.1177/0022343310381853. DOI: https://doi.org/10.1177/0022343310381853
View in Google Scholar
Hanedar, A. Ö., Torun, E., & Hanedar, E. Y. (2015). War-related risks and the ?stanbul Bourse on the eve of the First World War. Borsa Istanbul Review, 15(3), 2015, 205?212. doi: 10.1016/j.bir.2015.05.001. DOI: https://doi.org/10.1016/j.bir.2015.05.001
View in Google Scholar
Hansen, P., & Lunde, A. (2006). Consistent ranking of volatility models. Journal of Econometrics, 131(1?2), 97?121. doi: 10.1016/j.jeconom.2005.01.005. DOI: https://doi.org/10.1016/j.jeconom.2005.01.005
View in Google Scholar
Hansen, P., Lunde, A., & Nason, J. M. (2011). The model confidence set. Econometrica, 79, 453?497. doi: 10.3982/ECTA5771. DOI: https://doi.org/10.3982/ECTA5771
View in Google Scholar
Hotta, L. K., & Trucíos, C. (2018). Inference in (M)GARCH models in the presence of additive outliers: specification, estimation, and prediction. In C. Lavor & F. Gomes (Eds.). Advances in mathematics and applications (pp. 179?202). Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-94015-1_8
View in Google Scholar
Hudson, R., & Urquhart, A. (2015). War and stock markets: the effect of World War Two on the British stock market. International Review of Financial Analysis, 40, 166?177. doi: 10.1016/j.irfa.2015.05.015. DOI: https://doi.org/10.1016/j.irfa.2015.05.015
View in Google Scholar
Kambouroudis, D. S., McMillan, D. G., & Tsakou, K. (2021). Forecasting realized volatility: the role of implied volatility, leverage effect, overnight returns, and volatility of realized volatility. Journal of Futures Markets, 41, 1618?1639. doi: 10.1002/fut.22241. DOI: https://doi.org/10.1002/fut.22241
View in Google Scholar
Kayal, P., & Rohilla, P. (2021). Bitcoin in the economics and finance literature: a survey. SN Business & Economics, 1, 88. doi: 10.1007/s43546-021-00090-5. DOI: https://doi.org/10.1007/s43546-021-00090-5
View in Google Scholar
Kollias, C., Papadamou, S., & Stagiannis, A. (2010). Armed conflicts and capital markets: the case of the Israeli military offensive in the Gaza Strip. Defence and Peace Economics, 21, 357?365. doi: 10.1080/10242694.2010.491712. DOI: https://doi.org/10.1080/10242694.2010.491712
View in Google Scholar
Li, H., & Hong, Y. (2011). Financial volatility forecasting with range-based auto-regressive volatility model. Finance Research Letters, 8(2), 69?76. doi: 10.1016/j.frl.2010.12.002. DOI: https://doi.org/10.1016/j.frl.2010.12.002
View in Google Scholar
Lo, G. D., Marcelin, I., Bass?ne, T., & S?ne, B. (2022). The Russo-Ukrainian war and financial markets: the role of dependence on Russian commodities. Finance Research Letters, 50, 103194. doi: 10.1016/j.frl.2022.103194. DOI: https://doi.org/10.1016/j.frl.2022.103194
View in Google Scholar
Long, H., Demir, E., Będowska-Sójka, B., Zaremba, A., & Shahzad, S. J. H. (2022). Is geopolitical risk priced in the cross-section of cryptocurrency returns? Fi-nance Research Letters, 49, 103131. doi: 10.1016/j.frl.2022.103131. DOI: https://doi.org/10.1016/j.frl.2022.103131
View in Google Scholar
Lyócsa, S., & Plíhal, T. (2022). Russia?s ruble during the onset of the Russian inva-sion of Ukraine in early 2022: the role of implied volatility and attention. Fi-nance Research Letters, 48, 102995. doi: 10.1016/j.frl.2022.102995. DOI: https://doi.org/10.1016/j.frl.2022.102995
View in Google Scholar
Lyócsa, S., Plíhal, T., & Výrost, T. (2021a). FX market volatility modelling: can we use low-frequency data? Finance Research Letters, 40, 101776. doi: 10.1016/j.frl.2020.101776. DOI: https://doi.org/10.1016/j.frl.2020.101776
View in Google Scholar
Lyócsa, S., Todorova, N., & Výrost, T. (2021b). Predicting risk in energy markets: low-frequency data still matter. Applied Energy, 282, 116146. doi: 10.1016/ j.apenergy.2020.116146. DOI: https://doi.org/10.1016/j.apenergy.2020.116146
View in Google Scholar
Mancini, L., & Trojani, F. (2011). Robust value at risk prediction. Journal of Financial Econometrics, 9(2), 281?313. doi: 10.1093/jjfinec/nbq035. DOI: https://doi.org/10.1093/jjfinec/nbq035
View in Google Scholar
Meulemann, M., Uebele, M., & Wilfling, B. (2014). The restoration of the gold standard after the US Civil War: a volatility analysis. Journal of Financial Stability, 12, 37?46. doi: 10.1016/j.jfs.2013.05.001. DOI: https://doi.org/10.1016/j.jfs.2013.05.001
View in Google Scholar
Mohamad, A. (2022). Safe flight to which haven when Russia invades Ukraine? A 48-hour story. Economics Letters, 216, 110558. doi: 10.1016/j.econlet.20 22.110558. DOI: https://doi.org/10.1016/j.econlet.2022.110558
View in Google Scholar
Molnár, P. (2016). High-low range in GARCH models of stock return volatility. Applied Economics, 48(51), 4977?4991. doi: 10.1080/00036846.2016.1170929. DOI: https://doi.org/10.1080/00036846.2016.1170929
View in Google Scholar
Muler, N., & Yohai, V. J. (2008). Robust estimates for GARCH models. Journal of Statistical Planning and Inference, 138(10), 2918?40. doi: 10.1016/j.jspi.2007. 11.003. DOI: https://doi.org/10.1016/j.jspi.2007.11.003
View in Google Scholar
Naimy, V., Montero, J.-M., El Khoury, R., & Maalouf, N. (2020). Market volatility of the three most powerful military countries during their intervention in the Syrian War. Mathematics, 8(5), 834. doi: 10.3390/math8050834. DOI: https://doi.org/10.3390/math8050834
View in Google Scholar
Nelson, D. B., & Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model. Journal of Business and Economic Statistics, 10, 229?235. doi: 10.2307/1391681. DOI: https://doi.org/10.1080/07350015.1992.10509902
View in Google Scholar
Park, B. J. (2002). An outlier robust GARCH model and forecasting volatility of exchange rate returns. Journal of Forecasting, 21(5), 381?393. doi: 10.1002/ for.827. DOI: https://doi.org/10.1002/for.827
View in Google Scholar
Parkinson, M. (1980). The extreme value method for estimating the variance of the rate of return. Journal of Business, 53(1), 61?65. doi: 10.1086/296071. DOI: https://doi.org/10.1086/296071
View in Google Scholar
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility prox-ies. Journal of Econometrics, 160(1), 246?256. doi: 10.1016/j.jeconom.20 10.03.034. DOI: https://doi.org/10.1016/j.jeconom.2010.03.034
View in Google Scholar
Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M. Z., Barrow, D. K., Bergmeir, C., Bessa, R. J., Boylan, J. E., Browell, J., Carnevale, C., Castle, J. L., Cirillo, P., Clements, M. P., Cordeiro, C., Oliveira, F. L. C., de Baets, S, Dokumentov, A., Fiszeder, P., Franses, P. H., Gilliland, M., Gönül, M. S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D. F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V. R. R., Kang, Y., Koehler, A. B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martinez, A. B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panapakidis, I., Pavía, J. M., Pedio, M., Pedregal, D. J., Pinson, P., Ramos, P., Rapach, D. E., Reade, J. J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H. L., Spiliotis, E., Syntetos, A. A., Talagala, P. D., Talagala, T. S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Arenas, J. R. T., Wang, X., Winkler, R. L., Yusupova, A., & Ziel, F. (2022). Forecasting: theory and practice. International Journal of Forecasting, 35(3), 836?47. doi: 10.1016 /j.ijforecast.2021.11.001. DOI: https://doi.org/10.1016/j.ijforecast.2021.11.001
View in Google Scholar
Reschenhofer, E., Mangat, M. K., & Stark, T. (2020). Volatility forecasts, proxies and loss functions. Journal of Empirical Finance, 59, 133?153. doi: 10.1016/j. jempfin.2020.09.006. DOI: https://doi.org/10.1016/j.jempfin.2020.09.006
View in Google Scholar
Rigobon, R., & Sack, B. (2005). The effects of war risk on US financial markets. Journal of Banking and Finance, 29(7), 1769?1789. doi: 10.1016/j.jbankfin.2 004.06.040. DOI: https://doi.org/10.1016/j.jbankfin.2004.06.040
View in Google Scholar
Sakata, S., & White, H. (1998). High breakdown point conditional dispersion estimation with application to S&P 500 daily returns volatility. Econometrica, 66(3), 529. doi: 10.2307/2998574. DOI: https://doi.org/10.2307/2998574
View in Google Scholar
Schneider, G., & Troeger, V. E. (2006). War and the world economy stock market reactions to international conflicts. Journal of Conflict Resolution, 50(5), 623?645. doi: 10.1177/0022002706290430. DOI: https://doi.org/10.1177/0022002706290430
View in Google Scholar
Schwert, G. W. (1989). Why does stock market volatility change over time? Journal of Finance, 44, 1115?1153. doi: 10.1111/j.1540-6261.1989.tb02647.x. DOI: https://doi.org/10.1111/j.1540-6261.1989.tb02647.x
View in Google Scholar
Trucíos, C. (2019). Forecasting Bitcoin risk measures: a robust approach. International Journal of Forecasting, 35(3), 836?47. doi: 10.1016/j.ijforecast. 2019.01.003. DOI: https://doi.org/10.1016/j.ijforecast.2019.01.003
View in Google Scholar
Trucíos, C., & Hotta, L. K. (2015). Bootstrap prediction in univariate volatility models with leverage effect. Mathematics and Computers in Simulation, 120, 91?103. doi: 10.1016/j.matcom.2015.07.001. DOI: https://doi.org/10.1016/j.matcom.2015.07.001
View in Google Scholar
Trucíos, C., Hotta, L. K., & Ruiz, E. (2017). Robust bootstrap forecast densities for GARCH returns and volatilities. Journal of Statistical Computation and Simulation, 87(16), 3152?3174. doi: 10.1080/00949655.2017.1359601. DOI: https://doi.org/10.1080/00949655.2017.1359601
View in Google Scholar
Umar, Z., Polat, O., Choi, S. Y., & Teplova, T. (2022). The impact of the Russia-Ukraine conflict on the connectedness of financial markets. Finance Research Letters, 48, 102976. doi: 10.1016/j.frl.2022.102976. DOI: https://doi.org/10.1016/j.frl.2022.102976
View in Google Scholar
Wang, Y., Bouri, E., Fareed, Z., & Dai, Y. (2022). Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine. Finance Research Letters, 49, 103066. doi: 10.1016/j.frl.2022.103066. DOI: https://doi.org/10.1016/j.frl.2022.103066
View in Google Scholar
Yousaf, I., Patel, R., & Yarovaya, L. (2022). The reaction of G20+ stock markets to the Russia?Ukraine conflict ?black-swan? event: evidence from event study approach. Journal of Behavioral and Experimental Finance, 35, 100723. doi: 10.1016/j.jbef.2022.100723. DOI: https://doi.org/10.1016/j.jbef.2022.100723
View in Google Scholar
Zhang, Y., Ma, F., & Liao, Y. (2020). Forecasting global equity market volatilities. International Journal of Forecasting, 36(4), 1454?1475. doi: 10.1016/j.ijforec ast.2020.02.007. DOI: https://doi.org/10.1016/j.ijforecast.2020.02.007
View in Google Scholar