Life cycle cost assessment and economic analysis of a decentralized wastewater treatment to achieve water sustainability within the framework of circular economy

Authors

DOI:

https://doi.org/10.24136/oc.2023.003

Keywords:

wastewater, economic analysis, LCCA, Sustainable Development Goals, monetary evaluation

Abstract

Research background: The increasing water demand together with an unceasing production of wastewater worldwide has resulted in a situation where the scarcity and pollution of water resources are jeopardizing and depleting such a vital asset.

Purpose of the article: In this context, Nature Based Solutions (NBS) such as Vertical Flow Constructed Wetlands (VFCWs) are key because of their capacity of channelling a waste into a resource. However, and notwithstanding their essential role, their financial benefits too often go unnoticed because of missing research that study them from an economic perspective and this article has covered this existing gap. The objective of this research is to analyse the economic consequences of using VFCW against its traditional alternative through a comprehensive economic assessment.

Methods: After doing a Life Cycle Assessment (LCA), a combination of two approaches has been carried out. This research has developed a holistic approach where a Life Cycle Cost Assessment (LCCA) based on a Cost Benefit Analysis (CBA) along with an economic evaluation of cleaning environmental costs have been calculated for two different scenarios. For this monetary analysis, the environmental externalities derived from the use of cleaning the pollution caused by a public water supply and sewerage system and the VFCW have been quantified.

Findings & value added: Results conclude that VFCW apart of being a cost-effective and profitable alternative for an investor, it has also valuable benefits for the society in general because of its meaningful and positive externalities and the high removal cost of the environmental pollutants of the traditional water supply and sewage system both contributing directly to the achievement of Sustainable Development Goals (SDGs). Furthermore, 4/5 environmental impacts derived from the use of traditional alternative pollute more than twice as much as the VFCW does. Lastly, the cleaning costs difference between both alternatives is 1,984,335?.

Downloads

Download data is not yet available.

References

Abdelhay, A., & Abunaser, S. G. (2021). Modeling and economic analysis of grey-water treatment in rural areas in Jordan using a novel vertical-flow construct-ed wetland. Environmental Management, 67(3), 477?488. doi: 10.1007/s00267-020-0134 9-7.

DOI: https://doi.org/10.1007/s00267-020-01349-7
View in Google Scholar

Abdulfatah, H. K., Stanley, O. I., Nzerem, P., & Jakada, K. (2019). Defining the optimal development strategy to maximize recovery and production rate from an integrated offshore water-flood project. Paper presented at the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria, August 2019. doi: 10.2118/198843-MS.

DOI: https://doi.org/10.2118/198843-MS
View in Google Scholar

Agiakloglou, C., & Gkouvakis, M. (2022). Policy implications and welfare analysis under the possibility of default for the Euro zone area. Journal of Economic Asymmetries, 25, e00246. doi: 10.1016/j.jeca.2022.e00246.

DOI: https://doi.org/10.1016/j.jeca.2022.e00246
View in Google Scholar

AL-agele, H. A., Nackley, L., & Higgins, C. W. (2021). A pathway for sustainable agriculture. Sustainability, 13(8), 4328. doi: 10.3390/su13084328.

DOI: https://doi.org/10.3390/su13084328
View in Google Scholar

Arellano-Gonzalez, J., Aghakouchak, A., Levy, M. C., Qin, Y., Burney, J., Davis, S. J., & Moore, F. C. (2021). The adaptive benefits of agricultural water markets in California. Environmental Research Letters, 16(4), 044036. doi: 10.1088/1748-9326/ abde5b.

DOI: https://doi.org/10.1088/1748-9326/abde5b
View in Google Scholar

Ashu, A. B., & Lee, S. Il. (2021). The effects of climate change on the reuse of agri-cultural drainage water in irrigation. KSCE Journal of Civil Engineering, 25(3), 1116?1129. doi: 10.1007/s12205-021-0004-2.

DOI: https://doi.org/10.1007/s12205-021-0004-2
View in Google Scholar

Baggio, G., Qadir, M., & Smakhtin, V. (2021). Freshwater availability status across countries for human and ecosystem needs. Science of the Total Environment, 792, 148230. doi: 10.1016/j.scitotenv.2021.148230.

DOI: https://doi.org/10.1016/j.scitotenv.2021.148230
View in Google Scholar

Balk, D., Leyk, S., Montgomery, M. R., & Engin, H. (2021). Global harmonization of urbanization measures: Proceed with care. Remote Sensing, 13(24), 1?26. doi: 10.3390/rs13244973.

DOI: https://doi.org/10.3390/rs13244973
View in Google Scholar

Bassi, N., Kumar, S., Kumar, M. D., Van Ermen, S., & Campling, P. (2022). Promot-ing wastewater treatment in India: Critical questions of economic viability. Water and Environment Journal, 36 (4), 723-736. doi: 10.1111/wej.12810.

DOI: https://doi.org/10.1111/wej.12810
View in Google Scholar

Bhandari, S. N., Schlüter, S., Kuckshinrichs, W., Schlör, H., Adamou, R., & Bhandari, R. (2021). Economic feasibility of agrivoltaic systems in food-energy nexus context: Modelling and a case study in niger. Agronomy, 11(10), 1906. doi: 10.3390/agronomy11101906.

DOI: https://doi.org/10.3390/agronomy11101906
View in Google Scholar

Bolinches, A., Blanco-Gutiérrez, I., Zubelzu, S., Esteve, P., & Gómez-Ramos, A. (2022). A method for the prioritization of water reuse projects in agriculture ir-rigation. Agricultural Water Management, 263, 107435. doi: 10.1016/j.agwat.2021. 107435.

DOI: https://doi.org/10.1016/j.agwat.2021.107435
View in Google Scholar

Brennan, M., Rondón-Sulbarán, J., Sabogal-Paz, L. P., Fernandez-Iba?ez, P., & Galdos-Balzategui, A. (2021). Conceptualising global water challenges: A transdisciplinary approach for understanding different discourses in sustaina-ble development. Journal of Environmental Management, 298, 113361. doi: 10.1016/j.je nvman.2021.113361.

DOI: https://doi.org/10.1016/j.jenvman.2021.113361
View in Google Scholar

Bunn, S. E. (2016). Grand challenge for the future of freshwater ecosystems. Frontiers in Environmental Science, 4, 1?4. doi: 10.3389/fenvs.2016.00021.

DOI: https://doi.org/10.3389/fenvs.2016.00021
View in Google Scholar

Cao, Z., Zhou, L., Gao, Z., Huang, Z., Jiao, X., Zhang, Z., Ma, K., Di, Z., & Bai, Y. (2021). Comprehensive benefits assessment of using recycled concrete aggre-gates as the substrate in constructed wetland polishing effluent from wastewater treatment plant. Journal of Cleaner Production, 288, 125551. doi: 10.1016/j.jclepro.2020.125551.

DOI: https://doi.org/10.1016/j.jclepro.2020.125551
View in Google Scholar

Castellar, J. A. C., Torrens, A., Buttiglieri, G., Monclús, H., Arias, C. A., Carvalho, P. N., Galvao, A., & Comas, J. (2022). Nature-based solutions coupled with ad-vanced technologies: An opportunity for decentralized water reuse in cities. Journal of Cleaner Production, 340, 130660. doi: 10.1016/j.jclepro.2022.130660.

DOI: https://doi.org/10.1016/j.jclepro.2022.130660
View in Google Scholar

Corbella, C., Puigagut, J., & Garfí, M. (2017). Life cycle assessment of constructed wetland systems for wastewater treatment coupled with microbial fuel cells. Science of the Total Environment, 584?585, 355?362. doi: 10.1016/j.scitotenv.2016. 12.186.

DOI: https://doi.org/10.1016/j.scitotenv.2016.12.186
View in Google Scholar

Cui, X., Wang, J., Wang, X., Khan, M. B., Lu, M., Khan, K. Y., Song, Y., He, Z., Yang, X., Yan, B., & Chen, G. (2022). Biochar from constructed wetland biomass waste: A review of its potential and challenges. Chemosphere, 287(P3), 132259. doi: 10.1016/j.chemosphere.2021.132259.

DOI: https://doi.org/10.1016/j.chemosphere.2021.132259
View in Google Scholar

De Bruyn, S., Bijleveld, M., de Graaff, L., Schep, E., Schroten, A., Vergeer, R., & Ahdour, S. (2018). Environmental prices handbook. Committed to the Envi-ronment Delft, 18.7N54.12, 176. Retrieved from https://cedelft.eu/publications/envi ronmental-prices-handbook-eu28-version/ (20.10.2022).
View in Google Scholar

Declercq, R., Loubier, S., Condom, N., & Molle, B. (2020). Socio-economic interest of treated wastewater reuse in agricultural irrigation and indirect potable wa-ter reuse: Clermont-Ferrand and Cannes case studies? cost?benefit analysis. Irrigation and Drainage, 69(S1), 194?208. doi: 10.1002/ird.2205.

DOI: https://doi.org/10.1002/ird.2205
View in Google Scholar

Deng, S., Chen, J., & Chang, J. (2021). Application of biochar as an innovative sub-strate in constructed wetlands/biofilters for wastewater treatment: Perfor-mance and ecological benefits. Journal of Cleaner Production, 293, 126156. doi: 10.1016/ j.jclepro.2021.126156.

DOI: https://doi.org/10.1016/j.jclepro.2021.126156
View in Google Scholar

Dev, A., Dilly, T. C., Bakhshipour, A. E., Dittmer, U., & Bhallamudi, S. M. (2021). Optimal implementation of wastewater reuse in existing sewerage systems to improve resilience and sustainability in water supply systems. Water, 13(15), 2004. doi: 10.3390/w13152004.

DOI: https://doi.org/10.3390/w13152004
View in Google Scholar

Di Vaio, A., Trujillo, L., D?Amore, G., & Palladino, R. (2021). Water governance models for meeting sustainable development goals: A structured literature re-view. Utilities Policy, 72, 101255. doi: 10.1016/j.jup.2021.101255.

DOI: https://doi.org/10.1016/j.jup.2021.101255
View in Google Scholar

Diao, K. (2021). Towards resilient water supply in centralized control and decen-tralized execution mode. Aqua Water Infrastructure, Ecosystems and Society, 70(4), 449?466. doi: 10.2166/aqua.2021.162.

DOI: https://doi.org/10.2166/aqua.2021.162
View in Google Scholar

Diaz-Elsayed, N., Rezaei, N., Ndiaye, A., & Zhang, Q. (2020). Trends in the envi-ronmental and economic sustainability of wastewater-based resource recov-ery: A review. Journal of Cleaner Production, 265, 121598. doi: 10.1016/j.jclepro.2020 .121598.

DOI: https://doi.org/10.1016/j.jclepro.2020.121598
View in Google Scholar

Dumax, N., & Rozan, A. (2021). Valuation of the environmental benefits induced by a constructed wetland. Wetlands Ecology and Management, 29(6), 809?822. doi: 10.1007/s11273-021-09811-x.

DOI: https://doi.org/10.1007/s11273-021-09811-x
View in Google Scholar

Estelrich, M., Vosse, J., Comas, J., Atanasova, N., Costa, J. C., Gattringer, H., & Buttiglieri, G. (2021). Feasibility of vertical ecosystem for sustainable water treatment and reuse in touristic resorts. Journal of Environmental Management, 294, 112968. doi: 10.1016/j.jenvman.2021.112968.

DOI: https://doi.org/10.1016/j.jenvman.2021.112968
View in Google Scholar

Estévez, S., González-García, S., Feijoo, G., & Moreira, M. T. (2022). How decentral-ized treatment can contribute to the symbiosis between environmental protec-tion and resource recovery. Science of the Total Environment, 812, 151485. doi: 10.1016/j.scitotenv.2021.151485.

DOI: https://doi.org/10.1016/j.scitotenv.2021.151485
View in Google Scholar

Freeman, A. I., Widdowson, S., Murphy, C., & Cooper, D. J. (2019). Economic as-sessment of aerated constructed treatment wetlands using whole life costing. Water Science and Technology, 80(1), 75?85. doi: 10.2166/wst.2019.246.

DOI: https://doi.org/10.2166/wst.2019.246
View in Google Scholar

Galvis, A., Jaramillo, M. F., van der Steen, P., & Gijzen, H. J. (2018). Financial as-pects of reclaimed wastewater irrigation in three sugarcane production areas in the Upper Cauca river Basin, Colombia. Agricultural Water Management, 209, 102?110. doi: 10.1016/j.agwat.2018.07.019.

DOI: https://doi.org/10.1016/j.agwat.2018.07.019
View in Google Scholar

Gattringer, H., Claret, A., Radtke, M., Kisser, J., Zraunig, A., Odriguez-Roda, I., & Buttiglieri, G. (2016). Novel vertical ecosystem for sustainable water treatment and reuse in tourist resorts. International Journal of Sustainable Development and Planning, 11(3), 263?274. doi: 10.2495/SDP-V11-N3-263-274.

DOI: https://doi.org/10.2495/SDP-V11-N3-263-274
View in Google Scholar

Ghafourian, M., Nika, C. E., Mousavi, A., Mino, E., Al-Salehi, M., & Katsou, E. (2022). Economic impact assessment indicators of circular economy in a decen-tralised circular water system ? case of eco-touristic facility. Science of the Total Environment, 822, 153602. doi: 10.1016/j.scitotenv.2022.153602.

DOI: https://doi.org/10.1016/j.scitotenv.2022.153602
View in Google Scholar

Goedkoop, M., Heijungs, R., Huijbregts, M., Schryver, A. De, Struijs, J., & Zelm, R. Van. (2009). ReCiPe 2008. Potentials, May 2014, 1?44. Retrieved from http://www.pre-sustainability.com/download/misc/ReCiPe_main_report_final_ 27-02-2009_web.pdf (20.10.2022).
View in Google Scholar

Gukelberger, E., Gabriele, B., Hoinkis, J., & Figoli, A. (2018). MBR and integration with renewable energy toward suitable autonomous wastewater treatment. In Current trends and future developments on (bio-) membranes: Renewable energy inte-grated with membrane operations. Elsevier. doi: 10.1016/B978-0-12-813545-7.00014-3.

DOI: https://doi.org/10.1016/B978-0-12-813545-7.00014-3
View in Google Scholar

Hasik, V., Anderson, N. E., Collinge, W. O., Thiel, C. L., Khanna, V., Wirick, J., Piacentini, R., Landis, A. E., & Bilec, M. M. (2017). Evaluating the life cycle en-vironmental benefits and trade-offs of water reuse systems for net-zero build-ings. Environmental Science and Technology, 51(3), 1110?1119. doi: 10.1021/acs.est.6b03 879.

DOI: https://doi.org/10.1021/acs.est.6b03879
View in Google Scholar

Hejduková, P., & Kureková, L. (2020). Water scarcity: Regional analyses in the Czech Republic from 2014 to 2018. Oeconomia Copernicana, 11(1), 161?181. doi: 10.24136/oc.2020.007.

DOI: https://doi.org/10.24136/oc.2020.007
View in Google Scholar

Hristov, J., Barreiro-Hurle, J., Salputra, G., Blanco, M., & Witzke, P. (2021). Reuse of treated water in European agriculture: Potential to address water scarcity un-der climate change. Agricultural Water Management, 251, 106872. doi: 10.1016/j.agwat .2021.106872.

DOI: https://doi.org/10.1016/j.agwat.2021.106872
View in Google Scholar

Jahne, M. A., Brinkman, N. E., Keely, S. P., Zimmerman, B. D., Wheaton, E. A., & Garland, J. L. (2020). Droplet digital PCR quantification of norovirus and ade-novirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Research, 169, 115213. doi: 10.1016/j.watres.2019.115213.

DOI: https://doi.org/10.1016/j.watres.2019.115213
View in Google Scholar

Karaduić, V., & Đalović, N.. (2021). Profitability determinants of big european banks. Journal of Central Banking Theory and Practice, 10(2), 39?56. doi: 10.2478/ jcbtp-2021-0013.

DOI: https://doi.org/10.2478/jcbtp-2021-0013
View in Google Scholar

Kataki, S., Chatterjee, S., Vairale, M. G., Sharma, S., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on various aspects of microbial fuel cell integration, low temperature strategies and life cycle impact of the technology. Renewable and Sustainable En-ergy Reviews, 148, 111261. doi: 10.1016/j.rser.2021.111261.

DOI: https://doi.org/10.1016/j.rser.2021.111261
View in Google Scholar

Khalkhali, M., Dilkina, B., & Mo, W. (2021). The role of climate change and decen-tralization in urban water services: A dynamic energy-water nexus analysis. Water Research, 207, 117830. doi: 10.1016/j.watres.2021.117830.

DOI: https://doi.org/10.1016/j.watres.2021.117830
View in Google Scholar

Krimpas, N. A., Salamaliki, P. K., & Venetis, I. A. (2021). Factor decomposition of disaggregate inflation: The case of Greece. International Journal of Computational Economics and Econometrics, 11(1), 84?104. doi: 10.1504/IJCEE.2021.111713.

DOI: https://doi.org/10.1504/IJCEE.2021.10033210
View in Google Scholar

Kyle, P., Johnson, N., Davies, E., Bijl, D. L., Mouratiadou, I., Bevione, M., Drouet, L., Fujimori, S., Liu, Y., & Hejazi, M. (2016). Setting the system boundaries of ?energy for water? for integrated modeling. Environmental Science and Technol-ogy, 50(17), 8930?8931. doi: 10.1021/acs.est.6b01066.

DOI: https://doi.org/10.1021/acs.est.6b01066
View in Google Scholar

Laitinen, J., Moliis, K., & Surakka, M. (2017). Resource efficient wastewater treat-ment in a developing area?climate change impacts and economic feasibility. Ecological Engineering, 103, 217?225. doi: 10.1016/j.ecoleng.2017.04.017.

DOI: https://doi.org/10.1016/j.ecoleng.2017.04.017
View in Google Scholar

Lakho, F. H., Qureshi, A., Igodt, W., Le, H. Q., Depuydt, V., Rousseau, D. P. L., & Van Hulle, S. W. H. (2022). Life cycle assessment of two decentralized water treatment systems combining a constructed wetland and a membrane based drinking water production system. Resources, Conservation and Recycling, 178, 106104. doi: 10.1016/j.resconrec.2021.106104.

DOI: https://doi.org/10.1016/j.resconrec.2021.106104
View in Google Scholar

Lavrnić, S., Zapater-Pereyra, M., & Mancini, M. L. (2017). Water scarcity and wastewater reuse standards in Southern Europe: Focus on agriculture. Water, Air, and Soil Pollution, 228(7), 251. doi: 10.1007/s11270-017-3425-2.

DOI: https://doi.org/10.1007/s11270-017-3425-2
View in Google Scholar

Licciardello, F., Milani, M., Consoli, S., Pappalardo, N., Barbagallo, S., & Cirelli, G. (2018). Wastewater tertiary treatment options to match reuse standards in agri-culture. Agricultural Water Management, 210, 232?242. doi: 10.1016/j.agwat.2018. 08.001.

DOI: https://doi.org/10.1016/j.agwat.2018.08.001
View in Google Scholar

Liu, D., Zou, C., & Xu, M. (2019). Environmental, ecological, and economic benefits of biofuel production using a constructed wetland: A case study in China. International Journal of Environmental Research and Public Health, 16(5), 827. doi: 10.3390/ijerph16050827.

DOI: https://doi.org/10.3390/ijerph16050827
View in Google Scholar

Liu, Y., Sim, A., & Mauter, M. S. (2021). Energy-optimal siting of decentralized water recycling systems. Environmental Science and Technology, 55(22), 15343?15350. doi: 10.1021/acs.est.1c04708.

DOI: https://doi.org/10.1021/acs.est.1c04708
View in Google Scholar

Loarte-Flores, F., Vasquez-Olivera, Y., Mamani-Macedo, N., Raymundo-Iba?ez, C., & Dominguez, F. (2020). Comprehensive strategic risk management system to reduce evaluation times in small-scale mining projects. Advances in Intelligent Systems and Computing, 1152 AISC, 603?609. doi: 10.1007/978-3-030-44267-5_91.

DOI: https://doi.org/10.1007/978-3-030-44267-5_91
View in Google Scholar

López-Serrano, M. J., Velasco-Mu?oz, J. F., Aznar-Sánchez, J. A., & Román-Sánchez, I. M. (2021). Financial evaluation of the use of reclaimed water in agriculture in Southeastern Spain, a mediterranean region. Agronomy, 11(11), 2218. doi: 10.3390 /agronomy11112218.

DOI: https://doi.org/10.3390/agronomy11112218
View in Google Scholar

Lourenço, N., & Nunes, L. M. (2021). Life-cycle assessment of decentralized solu-tions for wastewater treatment in small communities. Water Science and Technology, 84(8), 1954?1968. doi: 10.2166/wst.2021.379.

DOI: https://doi.org/10.2166/wst.2021.379
View in Google Scholar

Lutterbeck, C. A., Kist, L. T., Lopez, D. R., Zerwes, F. V., & Machado, E. L. (2017). Life cycle assessment of integrated wastewater treatment systems with con-structed wetlands in rural areas. Journal of Cleaner Production, 148, 527?536. doi: 10.1016/j.jclepro.2017.02.024.

DOI: https://doi.org/10.1016/j.jclepro.2017.02.024
View in Google Scholar

Makropoulos, C., Rozos, E., Tsoukalas, I., Plevri, A., Karakatsanis, G., Karagi-annidis, L., Makri, E., Lioumis, C., Noutsopoulos, C., Mamais, D., Rippis, C., & Lytras, E. (2018). Sewer-mining: A water reuse option supporting circular economy, public service provision and entrepreneurship. Journal of Environ-mental Management, 216, 285?298. doi: 10.1016/j.jenvman.2017.07.026.

DOI: https://doi.org/10.1016/j.jenvman.2017.07.026
View in Google Scholar

Malik, M. F., Awan, M. S., & Malik, W. S. (2022). Determination of inflationary behavior: A comparative analysis. Cogent Economics and Finance, 10(1), 2019360. doi: 10.1080/23322039.2021.2019360.

DOI: https://doi.org/10.1080/23322039.2021.2019360
View in Google Scholar

Maniam, G., Zakaria, N. A., Leo, C. P., Vassilev, V., Blay, K. B., Behzadian, K., & Poh, P. E. (2022). An assessment of technological development and applications of decentralized water reuse: A critical review and conceptual framework. Wiley Interdisciplinary Reviews: Water, 9(3), 1?31. doi: 10.1002/wat2.1588.

DOI: https://doi.org/10.1002/wat2.1588
View in Google Scholar

Maryati, S., Firman, T., & Humaira, A. N. S. (2022). A sustainability assessment of decentralized water supply systems in Bandung City, Indonesia. Utilities Policy, 76, 101373. doi: 10.1016/j.jup.2022.101373.

DOI: https://doi.org/10.1016/j.jup.2022.101373
View in Google Scholar

Melián-Navarro, A., & Ruiz-Canales, A. (2020). Evaluation in carbon dioxide equivalent and chg emissions for water and energy management in water us-ers associations. A case study in the southeast of spain. Water, 12(12), 3536. doi: 10.3390 /w12123536.

DOI: https://doi.org/10.3390/w12123536
View in Google Scholar

Mohammed, R. (2022). The impact of crude oil price on food prices in Iraq. OPEC Energy Review, 46(1), 106?122. doi: 10.1111/opec.12225.

DOI: https://doi.org/10.1111/opec.12225
View in Google Scholar

Nuamah, L. A., Li, Y., Pu, Y., Nwankwegu, A. S., Haikuo, Z., Norgbey, E., Bana-hene, P., & Bofah-Buoh, R. (2020). Constructed wetlands, status, progress, and challenges. The need for critical operational reassessment for a cleaner produc-tive ecosystem. Journal of Cleaner Production, 269, 122340. doi: 10.1016/j.jclepro. 2020.122340.

DOI: https://doi.org/10.1016/j.jclepro.2020.122340
View in Google Scholar

Omole, D. O., Jim-George, T., & Akpan, V. E. (2019). Economic analysis of wastewater reuse in Covenant University. Journal of Physics: Conference Series, 1299(1), 012125. doi: 10.1088/1742-6596/1299/1/012125.

DOI: https://doi.org/10.1088/1742-6596/1299/1/012125
View in Google Scholar

Otter, P., Sattler, W., Grischek, T., Jaskolski, M., Mey, E., Ulmer, N., Grossmann, P., Matthias, F., Malakar, P., Goldmaier, A., Benz, F., & Ndumwa, C. (2020). Eco-nomic evaluation of water supply systems operated with solar-driven electro-chlorination in rural regions in Nepal, Egypt and Tanzania. Water Research, 187, 116384. doi: 10.1016/j.watres.2020.116384.

DOI: https://doi.org/10.1016/j.watres.2020.116384
View in Google Scholar

Pahl-Wostl, C. (2019). Governance of the water-energy-food security nexus: A multi-level coordination challenge. Environmental Science and Policy, 92, 356?367. doi: 10.1016/j.envsci.2017.07.017.

DOI: https://doi.org/10.1016/j.envsci.2017.07.017
View in Google Scholar

Pahunang, R. R., Buonerba, A., Senatore, V., Oliva, G., Ouda, M., Zarra, T., Mu?oz, R., Puig, S., Ballesteros, F. C., Li, C. W., Hasan, S. W., Belgiorno, V., & Naddeo, V. (2021). Advances in technological control of greenhouse gas emissions from wastewater in the context of circular economy. Science of the Total Environment, 792, 148479. doi: 10.1016/j.scitotenv.2021.148479.

DOI: https://doi.org/10.1016/j.scitotenv.2021.148479
View in Google Scholar

Pe?acoba-Antona, L., Senán-Salinas, J., Aguirre-Sierra, A., Letón, P., Salas, J. J., García-Calvo, E., & Esteve-Nú?ez, A. (2021). Assessing METland? design and performance through LCA: Techno-environmental study with multifunctional unit perspective. Frontiers in Microbiology, 12, 1?14. doi: 10.3389/fmicb.2021.6 52173.

DOI: https://doi.org/10.3389/fmicb.2021.652173
View in Google Scholar

Pickering, A. J., Crider, Y., Amin, N., Bauza, V., Unicomb, L., Davis, J., & Luby, S. P. (2015). Differences in field effectiveness and adoption between a novel au-tomated chlorination system and household manual chlorination of drinking water in Dhaka, Bangladesh: A randomized controlled trial. PLoS ONE, 10(3), 1?16. doi: 10.1371/journal.pone.0118397.

DOI: https://doi.org/10.1371/journal.pone.0118397
View in Google Scholar

Ponce-Robles, L., Masdemont-Hernández, B., Munuera-Pérez T., Pagán-Mu?oez, A., Lara-Guillén, A. J., García-García, A. J., Pedrero-Salcedo, F., Nortes-Tortorsa, P. A., Alarcón-Caba?ero, J. J. (2020). WWTP effluent quality im-provement for agricultural reuse using an autonomous prototype. Water, 12(8), 2240. doi: 10.3390/w12082240.

DOI: https://doi.org/10.3390/w12082240
View in Google Scholar

Resende, J. D., Nolasco, M. A., & Pacca, S. A. (2019). Life cycle assessment and cost-ing of wastewater treatment systems coupled to constructed wetlands. Resources, Conservation and Recycling, 148, 170?177. doi: 10.1016/j.resconrec.2019. 04.034.

DOI: https://doi.org/10.1016/j.resconrec.2019.04.034
View in Google Scholar

Ricart, S., & Rico-Amorós, A. M. (2021). Constructed wetlands to face water scarci-ty and water pollution risks: Learning from farmers? perception in Alicante, Spain. Water, 13(17), 2431. doi: 10.3390/w13172431.

DOI: https://doi.org/10.3390/w13172431
View in Google Scholar

Rodríguez de Sá Silva, A. C.., Bimbato, A. M., Balestieri, J. A. P., & Vilanova, M. R. N. (2022). Exploring environmental, economic and social aspects of rainwater harvesting systems: A review. Sustainable Cities and Society, 76, 103475. doi: 10.1016/j.scs.2021.103475.

DOI: https://doi.org/10.1016/j.scs.2021.103475
View in Google Scholar

Sakcharoen, T., Ratanatamskul, C., & Chandrachai, A. (2021). Factors affecting technology selection, techno-economic and environmental sustainability as-sessment of a novel zero-waste system for food waste and wastewater man-agement. Journal of Cleaner Production, 314, 128103. doi: 10.1016/j.jclepro.2021.12 8103.

DOI: https://doi.org/10.1016/j.jclepro.2021.128103
View in Google Scholar

Sánchez Pérez, J. A., Arzate, S., Soriano-Molina, P., García Sánchez, J. L., Casas López, J. L., & Plaza-Bola?os, P. (2020). Neutral or acidic pH for the removal of contaminants of emerging concern in wastewater by solar photo-Fenton? A techno-economic assessment of continuous raceway pond reactors. Science of the Total Environment, 736, 139681. doi: 10.1016/j.scitotenv.2020.139681.

DOI: https://doi.org/10.1016/j.scitotenv.2020.139681
View in Google Scholar

Tociu, C., Ciobotaru, I. E., Maria, C., Déak, G., Ivanov, A. A., Marcu, E., Marinescu, F., Savin, I., & Noor, N. M. (2019). Exhaustive approach to livestock wastewater treatment in irrigation purposes for a better acceptability by the public. AIP Conference Proceedings, 2129, 020066. doi: 10.1063/1.5118074.

DOI: https://doi.org/10.1063/1.5118074
View in Google Scholar

Truchado, P., Gil, M. I., López, C., Garre, A., López-Aragón, R. F., Böhme, K., & Allende, A. (2021). New standards at European Union level on water reuse for agricultural irrigation: Are the Spanish wastewater treatment plants ready to produce and distribute reclaimed water within the minimum quality require-ments? International Journal of Food Microbiology, 356. 109352. doi: 10.1016/j.ijfoodmicro.2021.109352.

DOI: https://doi.org/10.1016/j.ijfoodmicro.2021.109352
View in Google Scholar

UNESCO (2021). The United Nations world water development report 2021: Valuing water. Paris: UNESCO.
View in Google Scholar

UNESCO (2022). Nations world water development report 2022: Groundwater: Making the invisible visible. Paris: UNESCO.
View in Google Scholar

Vakilifard, N., Anda, M., A. Bahri, P., & Ho, G. (2018). The role of water-energy nexus in optimising water supply systems ? review of techniques and ap-proaches. Renewable and Sustainable Energy Reviews, 82, 1424?1432. doi: 10.1016/j. rser.2017.05.125.

DOI: https://doi.org/10.1016/j.rser.2017.05.125
View in Google Scholar

Van de Walle, A., Torfs, E., Gaublomme, D., & Rabaey, K. (2022). In silico assess-ment of household level closed water cycles: Towards extreme decentraliza-tion. Environmental Science and Ecotechnology, 10, 100148. doi: 10.1016/j.ese.2022.100 148.

DOI: https://doi.org/10.1016/j.ese.2022.100148
View in Google Scholar

Vymazal, J., Zhao, Y., & Mander, Ü. (2021). Recent research challenges in con-structed wetlands for wastewater treatment: A review. Ecological Engineering, 169(June), 106318. doi: 10.1016/j.ecoleng.2021.106318.

DOI: https://doi.org/10.1016/j.ecoleng.2021.106318
View in Google Scholar

Wang, M., Mohanty, S. K., & Mahendra, S. (2019). Nanomaterial-supported en-zymes for water purification and monitoring in point-of-use water supply sys-tems. Accounts of Chemical Research, 52(4), 876?885. doi: 10.1021/acs.accounts. 8b00613.

DOI: https://doi.org/10.1021/acs.accounts.8b00613
View in Google Scholar

Wang, X., Müller, C., Elliot, J., Mueller, N. D., Ciais, P., Jägermeyr, J., Gerber, J., Dumas, P., Wang, C., Yang, H., Li, L., Deryng, D., Folberth, C., Liu, W., Ma-kowski, D., Olin, S., Pugh, T. A. M., Reddy, A., Schmid, E., Jeong, S., Zhou, F., & Piao, S. (2021). Global irrigation contribution to wheat and maize yield. Nature Communications, 12(1), 1?8. doi: 10.1038/s41467-021-21498-5.

DOI: https://doi.org/10.1038/s41467-021-21498-5
View in Google Scholar

Weerasooriya, R. R., Liyanage, L. P. K., Rathnappriya, R. H. K., Bandara, W. B. M. A. C., Perera, T. A. N. T., Gunarathna, M. H. J. P., & Jayasinghe, G. Y. (2021). In-dustrial water conservation by water footprint and sustainable development goals: a review. Environment, Development and Sustainability, 23(9), 12661?12709. doi: 10.1007/s10668-020-01184-0.

DOI: https://doi.org/10.1007/s10668-020-01184-0
View in Google Scholar

Welivita, I., Willcock, S., Lewis, A., Bundhoo, D., Brewer, T., Cooper, S., Lynch, K., Mekala, S., Mishra, P. P., Venkatesh, K., Vicario, D. R., & Hutchings, P. (2021). Evidence of similarities in ecosystem service flow across the rural-urban spec-trum. Land, 10(4), 1?38. doi: 10.3390/land10040430.

DOI: https://doi.org/10.3390/land10040430
View in Google Scholar

Wu, H., Zhang, J., Ngo, H. H., Guo, W., Hu, Z., Liang, S., Fan, J., & Liu, H. (2015). A review on the sustainability of constructed wetlands for wastewater treat-ment: Design and operation. Bioresource Technology, 175, 594?601. doi: 10.1016/ j.biort ech.2014.10.068.

DOI: https://doi.org/10.1016/j.biortech.2014.10.068
View in Google Scholar

Yang, H., Chen, J., Yu, L., Li, W., Huang, X., Qin, Q., & Zhu, S. (2022). Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell. Environmental Research, 212, 113249. doi: 10.1016/j.envres.2022.113249.

DOI: https://doi.org/10.1016/j.envres.2022.113249
View in Google Scholar

Zadeh, S. M., Hunt, D. V. L., Lombardi, D. R., & Rogers, C. D. F. (2013). Shared urban greywater recycling systems: Water resource savings and economic in-vestment. Sustainability, 5(7), 2887?2912. doi: 10.3390/su5072887.

DOI: https://doi.org/10.3390/su5072887
View in Google Scholar

Zagklis, D. P., & Bampos, G. (2022). Tertiary wastewater treatment technologies: A review of technical, economic, and life cycle aspects. Processes, 10(11), 2304. doi: 10.3390/pr10112304.

DOI: https://doi.org/10.3390/pr10112304
View in Google Scholar

Zhang, H., Tang, W., Wang, W., Yin, W., Liu, H., Ma, X., Zhou, Y., Lei, P., Wei, D., Zhang, L., Liu, C., & Zha, J. (2021). A review on China?s constructed wetlands in recent three decades: Application and practice. Journal of Environmental Sci-ences, 104, 53-68. doi: 10.1016/j.jes.2020.11.032.

DOI: https://doi.org/10.1016/j.jes.2020.11.032
View in Google Scholar

Downloads

Published

2023-03-30

How to Cite

López-Serrano, M. J., Lakho, F. H., Van Hulle, S. W. H., & Batlles-delaFuente, A. (2023). Life cycle cost assessment and economic analysis of a decentralized wastewater treatment to achieve water sustainability within the framework of circular economy. Oeconomia Copernicana, 14(1), 103–133. https://doi.org/10.24136/oc.2023.003

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.