Big data management algorithms in artificial Internet of Things-based fintech
DOI:
https://doi.org/10.24136/oc.2023.023Keywords:
big data management algorithms, artificial intelligence, Internet of Things; fintech, banking; capital marketsAbstract
Research background: Fintech companies should optimize banking sector performance in assisting enterprise financing as a result of firm digitalization. Artificial IoT-based fintech-based digital transformation can relevantly reverse credit resource misdistribution brought about by corrupt relationship chains.
Purpose of the article: We aim to show that fintech can decrease transaction expenses and consolidates firm stock liquidity, enabling excess leverage decrease and cutting down information asymmetry and transaction expenses across capital markets. AI- and IoT-based fintechs enable immersive and collaborative financial transactions, purchases, and investments in relation to payment tokens and metaverse wallets, managing financial data, infrastructure, and value exchange across shared interactive virtual 3D and simulated digital environments.
Methods: AMSTAR is a comprehensive critical measurement tool harnessed in systematic review methodological quality evaluation, DistillerSR is harnessed in producing accurate and transparent evidence-based research through literature review stage automation, MMAT appraises and describes study checklist across systematic mixed studies reviews in terms of content validity and methodological quality predictors, Rayyan is a responsive and intuitive knowledge synthesis tool and cloud-based architecture for article inclusion and exclusion suggestions, and ROBIS appraises systematic review bias risk in relation to relevance and concerns. As a reporting quality assessment tool, the PRISMA checklist and flow diagram, generated by a Shiny App, was used. As bibliometric visualization and construction tools for large datasets and networks, Dimensions and VOSviewer were leveraged. Search terms were “fintech” + “artificial intelligence”, “big data management algorithms”, and “Internet of Things”, search period was June 2023, published research inspected was 2023, and selected sources were 35 out of 188.
Findings & value added: The growing volume of financial products and optimized operational performance of financial industries generated by fintech can provide firms with multifarious financing options quickly. Big data-driven fintech innovations are pivotal in banking and capital markets in relation to financial institution operational efficiency. Through data-driven technological and process innovation capabilities, AI system-based businesses can further automated services.
Downloads
References
Akmal, S., Talha, M., Faisal, S. M., Ahmad, M., & Khan, A. K. (2023). Perceptions about FinTech: New evidences from the Middle East. Cogent Economics & Finance, 11(1), 2217583. DOI: https://doi.org/10.1080/23322039.2023.2217583
View in Google Scholar
Andronie, M., Lăzăroiu, G., Iatagan, M., Uță, C., Ștefănescu, R., & Cocoșatu, M. (2021a). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electronics, 10, 2497. DOI: https://doi.org/10.3390/electronics10202497
View in Google Scholar
Andronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., & Dijmărescu, I. (2021b). Sustainable cyber-physical production systems in big data-driven smart urban economy: A systematic literature review. Sustainability, 13, 751. DOI: https://doi.org/10.3390/su13020751
View in Google Scholar
Andronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., Ștefănescu, R., Dijmărescu, A., Dijmărescu, I. (2023a). Big data management algorithms, deep learning-based object detection technologies, and geospatial simulation and sensor fusion tools in the Internet of Robotic Things. ISPRS International Journal of Geo-Information, 12, 35. DOI: https://doi.org/10.3390/ijgi12020035
View in Google Scholar
Andronie, M., Lăzăroiu, G., Karabolevski, O. L., Ștefănescu, R., Hurloiu, I., Dijmărescu, A., & Dijmărescu, I. (2023b). Remote big data management tools, sensing and computing technologies, and visual perception and environment mapping algorithms in the Internet of Robotic Things. Electronics, 12, 22. DOI: https://doi.org/10.3390/electronics12010022
View in Google Scholar
Awais, M., Afzal, A., Firdousi, S., & Hasnaoui, A. (2023). Is fintech the new path to sustainable resource utilisation and economic development? Resources Policy, 81, 103309. DOI: https://doi.org/10.1016/j.resourpol.2023.103309
View in Google Scholar
Babaei, G., Giudici, P., & Raffinetti, E. (2023). Explainable FinTech lending. Journal of Economics and Business. Advance online publicaiton. DOI: https://doi.org/10.1016/j.jeconbus.2023.106126
View in Google Scholar
Barbu, C. M., Florea, D. L., Dabija, D. C., & Barbu, M. C. R. (2021). Customer experience in fintech. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1415‒1433. DOI: https://doi.org/10.3390/jtaer16050080
View in Google Scholar
Ben Romdhane, Y., Kammoun, S., & Loukil, S. (2023). The impact of Fintech on inflation and unemployment: The case of Asia. Arab Gulf Journal of Scientific Research. Advance online publicaiton. DOI: https://doi.org/10.1108/AGJSR-08-2022-0146
View in Google Scholar
Caragea, D., Cojoianu, T., Dobri, M., Hoepner, A., Peia, O., & Romelli, D. (2023). Competition and innovation in the financial sector: Evidence from the rise of FinTech start-ups. Journal of Financial Services Research. Advance online publicaiton. DOI: https://doi.org/10.1007/s10693-023-00413-7
View in Google Scholar
Cazazian, R. (2022). Blockchain technology adoption in artificial intelligence-based digital financial services, accounting information systems, and audit quality control. Review of Contemporary Philosophy, 21, 55–71. DOI: https://doi.org/10.22381/RCP2120224
View in Google Scholar
Chen, W., Wu, W., & Zhang, T. (2023). Fintech development, firm digitalization, and bank loan pricing. Journal of Behavioral and Experimental Finance, 39, 100838. DOI: https://doi.org/10.1016/j.jbef.2023.100838
View in Google Scholar
Dabija, D. C., Csorba, L. M., Isac, F. L., & Rusu, S. (2022). Building trust towards sharing economy platforms beyond the COVID-19 pandemic. Electronics, 11(18), 2916. DOI: https://doi.org/10.3390/electronics11182916
View in Google Scholar
Dabija, D. C., Csorba, L. M., Isac, F. L., & Rusu, S. (2023). Managing sustainable sharing economy platforms: A stimulus–organism–response based structural equation modelling on an emerging market. Sustainability, 15(6), 5583. DOI: https://doi.org/10.3390/su15065583
View in Google Scholar
Doumpos, M., Zopounidis, C., Gounopoulos, D., Platanakis, E., & Zhang, W. (2023). Operational research and artificial intelligence methods in banking. European Journal of Operational Research, 306(1), 1–16. DOI: https://doi.org/10.1016/j.ejor.2022.04.027
View in Google Scholar
Edo, O. C., Etu, E.-E., Tenebe, I., Oladele, O. S., Edo, S., Diekola, O. A., & Emakhu, J. (2023). Fintech adoption dynamics in a pandemic: An experience from some financial institutions in Nigeria during COVID-19 using machine learning approach. Cogent Business & Management, 10(2), 2242985. DOI: https://doi.org/10.1080/23311975.2023.2242985
View in Google Scholar
Jareño, F., & Yousaf, I. (2023). Artificial intelligence-based tokens: Fresh evidence of connectedness with artificial intelligence-based equities. International Review of Financial Analysis, 89, 102826. DOI: https://doi.org/10.1016/j.irfa.2023.102826
View in Google Scholar
Gajdosikova, D., Lăzăroiu, G., & Valaskova, K. (2023). How particular firm-specific features influence corporate debt level: A case study of Slovak enterprises. Axioms, 12, 183. DOI: https://doi.org/10.3390/axioms12020183
View in Google Scholar
Gonçalves, A. R., Breda Meira, A., Shuqair, S., & Costa Pinto, D. (2023). Artificial intelligence (AI) in FinTech decisions: The role of congruity and rejection sensitivity. International Journal of Bank Marketing. Advance online publicaiton. DOI: https://doi.org/10.1108/IJBM-07-2022-0295
View in Google Scholar
Gordon, S. (2022). Virtual navigation and geospatial mapping tools, customer data analytics, and computer vision and simulation optimization algorithms in the blockchain-based metaverse. Review of Contemporary Philosophy, 21, 89–104. DOI: https://doi.org/10.22381/RCP2120226
View in Google Scholar
Grupac, M., Machcinik, S., & Negoianu, A.-E. (2023). Immersive engagement and geospatial mapping technologies, deep learning and neural network algorithms, and visual perception and data mining tools in metaverse interactive and extended reality environments. Linguistic and Philosophical Investigations, 22, 196–212. DOI: https://doi.org/10.22381/lpi22202312
View in Google Scholar
Ha, L. T. (2023). Dynamic connectedness between FinTech innovation and energy volatility during the war in time of pandemic. Environmental Science and Pollution Research, 30, 83530–83544. DOI: https://doi.org/10.1007/s11356-023-28089-5
View in Google Scholar
He, C., Geng, X., Tan, C., & Guo, R. (2023a). Fintech and corporate debt default risk: Influencing mechanisms and heterogeneity. Journal of Business Research, 164, 113923. DOI: https://doi.org/10.1016/j.jbusres.2023.113923
View in Google Scholar
He, M., Song, G., & Chen, Q. (2023b). Fintech adoption, internal control quality and bank risk taking: Evidence from Chinese listed banks. Finance Research Letters, 57, 104235. DOI: https://doi.org/10.1016/j.frl.2023.104235
View in Google Scholar
Horak, J., Voumik, L. C., & Popescu, G. H. (2023). Remote sensing data fusion techniques, multimodal behavioral predictive and mobile location analytics, and spatial cognition and context awareness algorithms in the metaverse economy. Linguistic and Philosophical Investigations, 22, 77–93. DOI: https://doi.org/10.22381/lpi2220235
View in Google Scholar
Ionescu, L. (2022). Big data algorithms and artificial intelligence technologies in cloud-based accounting information systems. Analysis and Metaphysics, 21, 42–57. DOI: https://doi.org/10.22381/am2120223
View in Google Scholar
Jiang, B. (2023). Does fintech promote the sustainable development of renewable energy enterprises? Environmental Science and Pollution Research, 30, 65141–65148. DOI: https://doi.org/10.1007/s11356-023-27030-0
View in Google Scholar
Khan, S., Khan, H. U., & Nazir, S. (2023). Utilizing the collective wisdom of fintech in the gcc region: A systematic mapping approach. Measurement and Control, 56(3/4), 713–732. DOI: https://doi.org/10.1177/00202940221124130
View in Google Scholar
Kliestik, T., Valaskova, K., Lăzăroiu, G., Kovacova, M., & Vrbka, J. (2020). Remaining financially healthy and competitive: The role of financial predictors. Journal of Competitiveness, 12(1), 74–92. DOI: https://doi.org/10.7441/joc.2020.01.05
View in Google Scholar
Kliestik, T., Vochozka, M., & Vasić, M. (2022). Biometric sensor technologies, visual imagery and predictive modeling tools, and ambient sound recognition software in the economic infrastructure of the metaverse. Review of Contemporary Philosophy, 21, 72–88. DOI: https://doi.org/10.22381/RCP2120225
View in Google Scholar
Kovacova, M., Horak, J., & Popescu, G. H. (2022). Haptic and biometric sensor technologies, deep learning-based image classification algorithms, and movement and behavior tracking tools in the metaverse economy. Analysis and Metaphysics, 21, 176–192. DOI: https://doi.org/10.22381/am21202211
View in Google Scholar
Lai, X., Yue, S., Guo, C., & Zhang, X. (2023). Does FinTech reduce corporate excess leverage? Evidence from China. Economic Analysis and Policy, 77, 281–299. DOI: https://doi.org/10.1016/j.eap.2022.11.017
View in Google Scholar
Lăzăroiu, G., Andronie, M., Iatagan, M., Geamănu, M., Ștefănescu, R., & Dijmărescu, I. (2022). Deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big data management algorithms in the Internet of Manufacturing Things. ISPRS International Journal of Geo-Information, 11, 277. DOI: https://doi.org/10.3390/ijgi11050277
View in Google Scholar
Li, C., Xu, Y., Zheng, H., Wang, Z., Han, H., & Zeng, L. (2023). Artificial intelligence, resource reallocation, and corporate innovation efficiency: Evidence from China’s listed companies. Resources Policy, 81, 103324. DOI: https://doi.org/10.1016/j.resourpol.2023.103324
View in Google Scholar
Lin, R.-R., & Lee, J.-C. (2023). The supports provided by artificial intelligence to continuous usage intention of mobile banking: Evidence from China. Aslib Journal of Information Management. Advance online publicaiton. DOI: https://doi.org/10.1108/AJIM-07-2022-0337
View in Google Scholar
Mahmud, K., Joarder, M. M. A., & Sakib, K. (2023). Customer Fintech readiness (CFR): Assessing customer readiness for fintech in Bangladesh. Journal of Open Innovation: Technology, Market, and Complexity, 9(2), 100032. DOI: https://doi.org/10.1016/j.joitmc.2023.100032
View in Google Scholar
Mariani, M. M., Machado, I., & Nambisan, S. (2023). Types of innovation and artificial intelligence: A systematic quantitative literature review and research agenda. Journal of Business Research, 155(B), 113364. DOI: https://doi.org/10.1016/j.jbusres.2022.113364
View in Google Scholar
Mirza, N., Elhoseny, M., Umar, M., & Metawa, N. (2023a). Safeguarding FinTech innovations with machine learning: Comparative assessment of various approaches. Research in International Business and Finance, 66, 102009. DOI: https://doi.org/10.1016/j.ribaf.2023.102009
View in Google Scholar
Mirza, N., Umar, M., Afzal, A., & Firdousi, S. F. (2023b). The role of fintech in promoting green finance, and profitability: Evidence from the banking sector in the euro zone. Economic Analysis and Policy, 78, 33–40. DOI: https://doi.org/10.1016/j.eap.2023.02.001
View in Google Scholar
Moldovan, G. M., Dabija, D. C., & Pocol, C.B. (2022). Resources management for a resilient world: A literature review of Eastern European countries with focus on household behaviour and trends related to food waste. Sustainability, 14(12), 7123. DOI: https://doi.org/10.3390/su14127123
View in Google Scholar
Nica, E., & Vahancik, J. (2023). Geospatial big data management and computer vision algorithms, remote sensing and image recognition technologies, and event modeling and forecasting tools in the virtual economy of the metaverse. Linguistic and Philosophical Investigations, 22, 9–25. DOI: https://doi.org/10.22381/lpi2220231
View in Google Scholar
Osei-Assibey Bonsu, M., Wang, Y., & Guo, Y. (2023). Does fintech lead to better accounting practices? Empirical evidence. Accounting Research Journal, 36(2/3), 129–147. DOI: https://doi.org/10.1108/ARJ-07-2022-0178
View in Google Scholar
Peters, M. A., Jackson, L., Papastephanou, M., Jandrić, P., Lăzăroiu, G., Evers, C. W., Cope, B., Kalantzis, M., Araya, D., Tesar, M., Mika, C., Chen, L., Wang, C., Sturm, S., Rider, S., & Fuller, S. (2023). AI and the future of humanity: ChatGPT-4, philosophy and education – Critical responses. Educational Philosophy and Theory. Advance online publicaiton. DOI: https://doi.org/10.1080/00131857.2023.2213437
View in Google Scholar
Qiu, Z., Wang, J., Wu, K., & Yang, S. (2023). The value of FinTech innovations for the finance industry: Evidence from China. Economic and Political Studies. Advance online publicaiton. DOI: https://doi.org/10.1080/20954816.2023.2222447
View in Google Scholar
Rabbani, M. R., Lutfi, A., Ashraf, M. A., Nawaz, N., & Watto, W. A. (2023). Role of artificial intelligence in moderating the innovative financial process of the banking sector: A research based on structural equation modeling. Frontiers in Environmental Science, 10, 978691. DOI: https://doi.org/10.3389/fenvs.2022.978691
View in Google Scholar
Rahmani, A. M., Rezazadeh, B., Haghparast, M., Chang, W.-C., & Ting, S. G. (2023). Applications of artificial intelligence in the economy, including applications in stock trading, market analysis, and risk management. IEEE Access, 11, 80769–80793. DOI: https://doi.org/10.1109/ACCESS.2023.3300036
View in Google Scholar
Sampat, B., Mogaji, E., & Nguyen, N. P. (2023). The dark side of FinTech in financial services: A qualitative enquiry into FinTech developers’ perspective. International Journal of Bank Marketing. Advance online publication. DOI: https://doi.org/10.1108/IJBM-07-2022-0328
View in Google Scholar
Singh, C. (2023). Artificial intelligence and deep learning: Considerations for financial institutions for compliance with the regulatory burden in the United Kingdom. Journal of Financial Crime. Advance online publicaiton. DOI: https://doi.org/10.1108/JFC-01-2023-0011
View in Google Scholar
Su, F., & Xu, C. (2023). Curbing credit corruption in China: The role of FinTech. Journal of Innovation & Knowledge, 8(1), 100292. DOI: https://doi.org/10.1016/j.jik.2022.100292
View in Google Scholar
Upreti, K., Syed, M. H., Khan, M. A., Fatima, H., Alam, M. S., & Sharma, A. K. (2023). Enhanced algorithmic modelling and architecture in deep reinforcement learning based on wireless communication Fintech technology. Optik, 272, 170309. DOI: https://doi.org/10.1016/j.ijleo.2022.170309
View in Google Scholar
Vagner, L., Valaskova, K., Durana, P., & Lăzăroiu, G. (2021). Earnings management: A bibliometric analysis. Economics and Sociology, 14(1), 249‒262. DOI: https://doi.org/10.14254/2071-789X.2021/14-1/16
View in Google Scholar
Valaskova, K., Nagy, M., Zabojnik, S., & Lăzăroiu, G. (2022). Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in Slovak exports. Mathematics, 10, 2452. DOI: https://doi.org/10.3390/math10142452
View in Google Scholar
Wang, L., Cao, Z., & Dong, Z. (2023). Are artificial intelligence dividends evenly distributed between profits and wages? Evidence from the private enterprise survey data in China. Structural Change and Economic Dynamics, 66, 342–356. DOI: https://doi.org/10.1016/j.strueco.2023.05.010
View in Google Scholar
Wu, G., Luo, J., & Tao, K. (2023). Research on the influence of FinTech development on credit supply of commercial banks: The case of China. Applied Economics. Advance online publicaiton. DOI: https://doi.org/10.1080/00036846.2023.2169243
View in Google Scholar
Yan, X. (2023). Research on financial field integrating artificial intelligence: Application basis, case analysis, and SVR model-based overnight. Applied Artificial Intelligence, 37(1), 2222258. DOI: https://doi.org/10.1080/08839514.2023.2222258
View in Google Scholar
Zhao, Y., Goodell, J. W., Wang, Y., & Abedin, M. Z. (2023). Fintech, macroprudential policies and bank risk: Evidence from China. International Review of Financial Analysis, 87, 102648. DOI: https://doi.org/10.1016/j.irfa.2023.102648
View in Google Scholar
Zheng, Z., He, J., Yang, Y., Zhang, M., Wu, D., Bian, Y., & Cao, J. (2023). Does financial leverage volatility induce systemic financial risk? Empirical insight based on the Chinese fintech sector. Managerial and Decision Economics, 44(2), 1142–1161. DOI: https://doi.org/10.1002/mde.3738
View in Google Scholar
Zvarikova, K., Rowland, Z., & Nica, E. (2022). Multisensor fusion and dynamic routing technologies, virtual navigation and simulation modeling tools, and image processing computational and visual cognitive algorithms across Web3-powered metaverse worlds. Analysis and Metaphysics, 21, 125–141. DOI: https://doi.org/10.22381/am2120228
View in Google Scholar