Tracking financial cycles in ten transitional economies 2005?2018 using singular spectrum analysis (SSA) techniques
DOI:
https://doi.org/10.24136/eq.2019.001Keywords:
financial cycles, spectral analysis, countries in transition, turning point, durationAbstract
Research background: Financial cycles are behind many deep financial crises and it closely connects them with the business cycles, showing long memory properties and effects. Being closely connected with the business cycles, we must first explore the true nature of the financial cycles to understand the nature of the business cycles. Financial cycles are real, they have long memory properties and long-lasting effects on the economy.
Purpose of the article: This study investigates the use of (SSA) in tracking and monitoring financial cycles focusing on ten (10) transitional economies 2005?2018.
Methods: Singular spectrum analysis isolate significant oscillatory patterns (cycles) on housing markets with an average 4-years length. We isolate credit cycles just for Bulgaria, implying long memory properties of the cycles since this study investigated medium term (2?5 years) oscillations.
Findings & Value added: The results prove the importance and advantages of using (SSA) in the study of financial cycles attempting to reveal the true nature of financial cycles as the principal component behind business cycles. Financial cycles show longer oscillations in the credit and property price series, which can explain 37.7%?49.9% of the variance of the total financial cycle fluctuations. Study results are of practical importance, particularly to policy-makers and practitioners in former transitional economies being vulnerable to adverse shocks on the financial markets. The results should assist policy-makers and financial practitioners in building and maintaining a sound financial policy needed to avoid future financial ?bubbles?.
Downloads
References
Allen, M. R., & Smith, L. A. (1996). Monte Carlo SSA: detecting irregular oscillations in the presence of colored noise. Journal of Climate, 9(12), 3373-3404. doi: 10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2.
DOI: https://doi.org/10.1175/1520-0442(1996)009<3373:MCSDIO>2.0.CO;2
View in Google Scholar
Antonakakis, N., Breitenlechner, M., & Scharler, J. (2015). Business cycle and financial cycle spillovers in the G7 countries. Quarterly Review of Economics and Finance, 58. doi: 10.1016/j.qref.2015.03.002.
DOI: https://doi.org/10.1016/j.qref.2015.03.002
View in Google Scholar
Bank for International Settlements. Retrieved from https://www.bis.org/statistics/ totcredit.htm (10.11.2018).
View in Google Scholar
Bank of Latvia. Retrieved from https://www.bank.lv/en/statistics (10.11.2018).
View in Google Scholar
Bank of Lithuania. Retrieved from https://www.lb.lt/en/lb-statistics (10.11.2018).
View in Google Scholar
Bernanke, B. S., Gertler, M., & Gilchrist, S. (1999). The financial accelerator in a quantitative business cycle framework. In Handbook of macroeconomics. Volume 1C. Handbooks in economics. Vol. 15. Amsterdam: Elsevier.
DOI: https://doi.org/10.3386/w6455
View in Google Scholar
Bongini, P., Iwanicz-Drozdowska, M., Smaga, P., & Witkowski, B. (2017). Financial development and economic growth: the role of foreign-owned banks in CESEE countries. Sustainability, 9(3). doi: 10.3390/su9030335.
DOI: https://doi.org/10.3390/su9030335
View in Google Scholar
Borio, C. (2014). The financial cycle and macroeconomics: what have we learnt?, Journal of Banking & Finance, 45. doi: 10.1016/j.jbankfin.2013.07.031.
DOI: https://doi.org/10.1016/j.jbankfin.2013.07.031
View in Google Scholar
Borio, C. (2017). Secular stagnation or financial cycle drag? Business Economics, 52(2). doi: 10.1057/s11369-017-0035-3.
DOI: https://doi.org/10.1057/s11369-017-0035-3
View in Google Scholar
Borio, C., Disyatat, P., & Juselius, M. (2017). Rethinking potential output: embedding information about the financial cycle. Oxford Economics Papers, 69(3). doi: 10.1093/oep/gpw063.
DOI: https://doi.org/10.1093/oep/gpw063
View in Google Scholar
Borio, C., & Drehmann, M. (2011). Financial instability and macroeconomics: bridging the gulf. In World scientific atudies in international economics. The international financial crisis. World Scientific. doi: 10.1142/9789814322 096_0017.
DOI: https://doi.org/10.1142/9789814322096_0017
View in Google Scholar
Borio, C., Lombardi, M., & Zampolli, F. (2019). Fiscal sustainability and the financial cycle. In L. Ódor (Ed.). Rethinking fiscal policy after the crisis. editor). Cmbridge Univiersity Press doi: 10.1017/9781316675861.013.
DOI: https://doi.org/10.1017/9781316675861.013
View in Google Scholar
Bulgarian national bank. Retrieved from http://www.bnb.bg/Statistics/index.htm (10.11.2018).
View in Google Scholar
Burns, A. F., & Mitchell, W. C. (1946). Measuring business cycles. National Bureau of Economic Research.
View in Google Scholar
Chang, Y. (2016). Financial soundness indicator, financial cycle, credit cycle and business. International Journal of Economics and Finance, 8(4). doi: 10.5539/ijef.v8n4p166.
DOI: https://doi.org/10.5539/ijef.v8n4p166
View in Google Scholar
Chorafas, D. N. (2015). Financial cycles. Palgrave Macmillan.
DOI: https://doi.org/10.1057/9781137497987
View in Google Scholar
Christiano, L. J., & Fitzgerald, T. J. (2003). The band-pass filter. International Economic Review, 44(2). doi: 10.1111/1468-2354.t01-1-00076.
DOI: https://doi.org/10.1111/1468-2354.t01-1-00076
View in Google Scholar
Croatian National Bank. Retrieved form https://www.hnb.hr/statistics (10.11.2018).
View in Google Scholar
Diebold, F. X., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Economic Journal, 119(534). doi: 10.1111/j.1468-0297.2008.02208.x.
DOI: https://doi.org/10.1111/j.1468-0297.2008.02208.x
View in Google Scholar
Diebold, F. X., & Yilmaz, K. (2012). Better to give than to receive: predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1). doi: 10.1016/j.ijforecast.2011.02.006.
DOI: https://doi.org/10.1016/j.ijforecast.2011.02.006
View in Google Scholar
Don, H., & Adrian, P. (2002). Dissecting the cycle: a methodological investigation. Journal of Monetary Economics, 49(2). doi: 10.1016/S0304-3932(01)00108-8.
DOI: https://doi.org/10.1016/S0304-3932(01)00108-8
View in Google Scholar
Drehman, M., Borio, C., & Tsatsaronis, K. (2012). Characterising the financial cycle: don’t lose sight of the medium term! BIS Working Papers, 380.
View in Google Scholar
Drehmann, M., Borio, C., & Tsatsaronis, K. (2013). Can we identify the financial cycle? In D. D. Evanoff, C. Holthausen, G. G. Kaufman & M. Kremer (Eds.). The role of central banks in financial stability how has it changed? Studies in world scientific studies in international economics: Volume 30. World Scientific. doi: 10.1142/9789814449922_0007.
DOI: https://doi.org/10.1142/9789814449922_0007
View in Google Scholar
Estonian National Bank. Retrieved from https://www.eestipank.ee/en/statistics (10.11.2019).
View in Google Scholar
Eurostat housing price statistics . Retrieved from http://appsso.eurostat.ec.europa. eu/nui/ show.do?dataset=prc_hpi_q&lang=en (10.11.2019).
View in Google Scholar
Federal Reserve Bank of St. Louis. Retrieved from https://fred.stlouisfed.org/series (10.11.2019).
View in Google Scholar
Felício A.J., Rodrigues, R., Grove, H., & Greiner, A. (2018) The influence of corporate governance on bank risk during a financial crisis, Economic Research-Ekonomska Istraživanja, 31(1). doi: 10.1080/1331677X.2018.1436 457.
DOI: https://doi.org/10.1080/1331677X.2018.1436457
View in Google Scholar
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., & Yiou, P. (2001). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40(1). doi: 10.1029/2000RG000092.
DOI: https://doi.org/10.1029/2000RG000092
View in Google Scholar
Globan, T. (2018). Financial supply cycles in post-transition Europe – introducing a composite index for financial supply. Post-communist Economies, 30(4). doi: 10.1080/14631377.2018.1442053.
DOI: https://doi.org/10.1080/14631377.2018.1442053
View in Google Scholar
Groth, A., & Ghil, M. (2015). Monte Carlo singular spectrum analysis (SSA) revisited: detecting oscillator clusters in multivariate datasets. Journal of Climate, 28(19). doi: 10.1175/jcli-d-15-0100.1.
DOI: https://doi.org/10.1175/JCLI-D-15-0100.1
View in Google Scholar
Harding, D., & Pagan, A. (2016). The econometric analysis of recurrent events in macroeconomics and finance. Princeton University Press.
DOI: https://doi.org/10.23943/princeton/9780691167084.001.0001
View in Google Scholar
Hodrick, R. J., & Prescott, E. C. (1997). Postwar U.S. business cycles: an empirical investigation. Journal of Money, Credit and Banking, 29(1). doi: 10.2307/2953682.
DOI: https://doi.org/10.2307/2953682
View in Google Scholar
Iacobucci A. (2005). Spectral analysis for economic time series. In J. Leskow, L. F. Punzo & M. P. Anyul (Eds). New tools of economic dynamics. Lecture notes in economics and mathematical systems, vol 551. Springer, Berlin, Heidelberg .
DOI: https://doi.org/10.1007/3-540-28444-3_12
View in Google Scholar
Jenkins, G. M., & Watts, D. G. (1968). Spectral analysis and its applications. San Francisco: Holden-Day.
View in Google Scholar
Kunovac, D., Mandler, M., & Scharnagl, M. (2018). Financial cycles in Euro area economies: a Cross-Country Perspective. Discussion Papers, Deutsche Bundesbank, 04/2018.
DOI: https://doi.org/10.2139/ssrn.3151336
View in Google Scholar
Lee, C. C., Chen, M. P., & Ning, S. L. (2017). Why did some firms perform better in the global financial crisis? Economic Research-Ekonomska Istraživanja, 30(1). doi: 10.1080/1331677X.2017.1355258.
DOI: https://doi.org/10.1080/1331677X.2017.1355258
View in Google Scholar
Mañé, R. (1981). On the dimension of the compact invariant sets of certain non-linear maps. In Lecture notes in mathematics. Berlin: Springer Verlag. doi: 10.1007/BFb0091916.
DOI: https://doi.org/10.1007/BFb0091916
View in Google Scholar
Miranda-Agrippino, S., & Rey, H. (2018). U.S. monetary policy and the global financial cycle. NBER Working Paper, 21722. doi: 10.3386/w21722.
DOI: https://doi.org/10.3386/w21722
View in Google Scholar
Nina, G., Vladimir, N., & Anatoly, Z. (2001). Analysis of time series structure: SSA and related techniques. Beopsc Ta: Chapman & Hall/CRC.
View in Google Scholar
Nolan, C., & Thoenissen, C. (2009). Financial shocks and the US business cycle. Journal of Monetary Economics, 56(4). doi: 10.1016/j.jmoneco.2009.03.007.
DOI: https://doi.org/10.1016/j.jmoneco.2009.03.007
View in Google Scholar
OECD (2019). House prices and related indicators. Retrieved from https://stats.oecd.org/Index.aspx?DataSetCode=HOUSE_PRICES (10.11.2018).
View in Google Scholar
Sella, L., Vivaldo, G., Ghil, M., & Groth, A. (2010). Economic cycles and their synchronization: spectral analysis of macroeconomic series from Italy, The Netherlands, and the UK. Euroindicators working papers Slovakia National Bank. Retrieved from https://www.nbs.sk/en/statistics (10.11. 2018).
View in Google Scholar
Škare, M., Sinković, D., & Porada-Rochoń, M. (2019a). Financial development and economic growth in Poland 1990-2018. Technological and Economic Development of Economy, 25(2). doi: 10.3846/tede.2019.7925.
DOI: https://doi.org/10.3846/tede.2019.7925
View in Google Scholar
Škare, M., Sinković, D., & Porada-Rochoń, M. (2019b). Measuring credit structure impact on economic growth in Croatia using (VECM) 1990–2018. Journal of Business Economics and Management. 20(2). doi: 10.3846/jbem.2019.8344.
DOI: https://doi.org/10.3846/jbem.2019.8344
View in Google Scholar
Takens, F. (1981). Detecting strange attractors in turbulence. In Lecture notes in mathematics. Berlin Springer Verlag. doi: 10.1007/BFb0091924.
DOI: https://doi.org/10.1007/BFb0091924
View in Google Scholar
Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3). doi: 10.1016/0167-2789(89)90077-8.
DOI: https://doi.org/10.1016/0167-2789(89)90077-8
View in Google Scholar
Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4). doi: 10.1016/0167-2789(92)90103-t.
DOI: https://doi.org/10.1016/0167-2789(92)90103-T
View in Google Scholar
Yülek, M. A. (2017). Why governments may opt for financial repression policies: selective credits and endogenous growth. Economic Research-Ekonomska Istraživanja, 30(1). doi: 10.1080/1331677X.2017.1355252.
DOI: https://doi.org/10.1080/1331677X.2017.1355252
View in Google Scholar