Integration in Central European capital markets in the context of the global COVID-19 pandemic
DOI:
https://doi.org/10.24136/eq.2020.027Keywords:
COVID-19, capital market, financial integration, portfolio diversification, financial crisisAbstract
Research background: Covid-19 pandemic had a strong impact on the economy and capital market. In times of crisis, it is important for investors to be able to diversify their investment portfolio in order to mitigate risk. However, the growing trend towards capital market integration may make it ineffective. Research on financial integration, during the Covid-19 period, has started to develop, mainly in major global capital markets. It is, therefore, important to extend this research to other capital markets.
The purpose of the article: This contribution aims to analyze financial integration in the stock indexes of the capital markets of Austria (ATX), Slovenia (SBITOP), Hungary (BUDAPEST SE), Lithuania (OMX VILNIUS), Poland (WIG), the Czech Republic (PX PRAGUE), Russia (MOEX) and Serbia (BELEX 15), in the context of the global pandemic (COVID-19).
Methods: To measure the unit roots in the time series, we used ADF, PP, and KPSS tests, and Clemente et al. (1998) test to detect structural breaks. To ana-lyse financial integration, we applied the Gregory and Hansen integration test, and to validate the robustness of results, we use the impulse-response function (IRF) methodology, with Monte Carlo simulations, as they provide a dynamic analysis generated from the VAR model estimates.
Findings & Value added: The results suggest very significant levels of integration, which decreases the chances of portfolio diversification in the long-term. Evidence shows 47 pairs of integrated stock market indexes (out of 56 possible). The stock indexes ATX, BUDAPESTE SE, BELEX 15 show financial integration with all other indexes. On the contrary, the index of OMX VILNIUS shows only 3 integrations. Results also show that most of the significant structural breaks occurred in March 2020. The analysis of the relationship between markets, in the short term, shows positive/negative co-movements, with statis-tical significance and with a persistence longer than one week.
Downloads
References
Ali, M., Alam, N., & Rizvi, S. (2020). Coronavirus (COVID-19) ? An epidemic or pandemic for financial markets. Journal of Behavioral and Experimental Finance. doi: 10.1016/j.jbef.2020.100341.
DOI: https://doi.org/10.1016/j.jbef.2020.100341
View in Google Scholar
Aziakpono, M. J. (2006). Financial integration amongst the SACU countries: Evidence from interest rate pass-through analysis. Journal for Studies in Economics and Econometrics, 30(2), 1-23. doi: 10.1111/pirs.12550.
DOI: https://doi.org/10.1080/10800379.2006.12106405
View in Google Scholar
Baruník, J., & Vácha, L. (2013). Contagion among Central and Eastern European stock markets during the financial crisis. Finance a Uver 63(5), 443-453.
View in Google Scholar
Bremus, F., & Kliatskova, T. (2020). Legal harmonization, institutional quality, and countries? external positions: A sectoral analysis. Journal of International Money and Finance, 107. doi: 10.1016/j.jimonfin.2020.102217.
DOI: https://doi.org/10.1016/j.jimonfin.2020.102217
View in Google Scholar
Caporale, G. M., Gil-Alana, L. A., & Poza, C. (2020). High and low prices and the range in the European stock markets: A long-memory approach. Research in International Business and Finance, 52. doi: 10.1016/j.ribaf.2019.101126.
DOI: https://doi.org/10.1016/j.ribaf.2019.101126
View in Google Scholar
Carausu, N., Filip, B., Cigu, E., & Carmen, T. (2017). Contagion of capital markets in CEE countries: Evidence from Wavelet analysis. Emerging Markets Finance and Trade, 54(5). doi: 10.1080/1540496X.2017.1410129.
DOI: https://doi.org/10.1080/1540496X.2017.1410129
View in Google Scholar
Nicusor Dumitru ? Bogdan Florin Filip ? Elena Cigu ? Toderascu Sandu Carmen
View in Google Scholar
Clemente, J., Monta?és, A., & Reyes, M. (1998). Testing for a unit root in variables with a double change in the mean. Economics Letters, 59(2), 175-182. doi: 10.1016/S0165-1765(98)00052-4.
DOI: https://doi.org/10.1016/S0165-1765(98)00052-4
View in Google Scholar
Chiaramonti, D., & Maniatis, K. (2020). Security of supply, strategic storage and Covid19: Which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport? Applied Energy, 271. doi: 10.1016/j.apenergy.2020.115216.
DOI: https://doi.org/10.1016/j.apenergy.2020.115216
View in Google Scholar
Cole, M. A., Elliott, R. J. R., & Liu, B. (2020). The impact of the Wuhan Covid-19 lockdown on air pollution and health: A machine learning and augmented synthetic control approach. Environmental and Resource Economics, 76(4), 553-580. doi: 10.1007/s10640-020-00483-4.
DOI: https://doi.org/10.1007/s10640-020-00483-4
View in Google Scholar
Dias, R., da Silva, J. V., & Dionísio, A. (2019). Financial markets of the LAC region: Does the crisis influence the financial integration? International Review of Financial Analysis, 63, 160-173. doi: 10.1016/j.irfa.2019.02.008.
DOI: https://doi.org/10.1016/j.irfa.2019.02.008
View in Google Scholar
Dickey, D., & Fuller, W. (1981). Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica, 49(4), 1057-1072. doi: 10.2307/1912517.
DOI: https://doi.org/10.2307/1912517
View in Google Scholar
Engle, R. F., & Granger, C. W. J. (1987). Co-Integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251. doi: 10.2307/1913236.
DOI: https://doi.org/10.2307/1913236
View in Google Scholar
Gregory, A. W., & Hansen, B. E. (1996). Residual-based tests for cointegration in models with regime shifts. Journal of Econometrics, 70(1), 99-126. doi: 10.1016/0304-4076(69)41685-7.
DOI: https://doi.org/10.1016/0304-4076(69)41685-7
View in Google Scholar
Griffith, R., Levell, P., & Stroud, R. (2020). The impact of COVID?19 on share prices in the UK*. Fiscal Studies, 41(2), 363-369. doi: 10.1111/1475-5890.12226.
DOI: https://doi.org/10.1111/1475-5890.12226
View in Google Scholar
Grigaliuniene, Z., Celov, D., & Hartwell, C. A. (2020). The more the Merrier? The reaction of euro area stock markets to new members. Journal of International Financial Markets, Institutions and Money, 66. doi: 10.1016/j.intfin. 2020.101195.
DOI: https://doi.org/10.1016/j.intfin.2020.101195
View in Google Scholar
Grubel, H. G. (1968). Internationally diversified portfolios: Welfare gains and capital flows. American Economic Review, 58(5), 867-868. doi: 10.1126/scien ce.151.3712.867-a.
View in Google Scholar
Hao, N., Wang, H. H., & Zhou, Q. (2020). The impact of online grocery shopping on stockpile behaviour in Covid-19. China Agricultural Economic Review, 12(3), 459-470. doi: 10.1108/CAER-04-2020-0064.
DOI: https://doi.org/10.1108/CAER-04-2020-0064
View in Google Scholar
Hašková, S., & Vochozka, M. (2018). Duality in cyclical trends in European Union confirmed. SAGE Open, 8(1), 1-7. doi: 10.1177/2158244017753268.
DOI: https://doi.org/10.1177/2158244017753268
View in Google Scholar
Hoffmann, P., Kremer, M., & Zaharia, S. (2020). Financial integration in Europe through the lens of composite indicators. Economics Letters, 194. doi: 10.1016/j.econlet.2020.109344.
DOI: https://doi.org/10.1016/j.econlet.2020.109344
View in Google Scholar
Horák, J., & Krulický, T. (2019). Comparison of exponential time series alignment and time series alignment using artificial neural networks by example of prediction of future development of stock prices of a specific company. In J. Horák (Ed.). SHS web of conferences: innovative economic symposium 2018 - milestones and trends of world economy (IES2018). EDP Sciences: Les Ulis, France. doi: 10.1051/shsconf/20196101006.
DOI: https://doi.org/10.1051/shsconf/20196101006
View in Google Scholar
Horák, J., Vrbka, J., & Šuleř, P. (2020). Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison. Journal of Risk and Financial Management, 13(3). doi: 10.3390/jrfm13030060.
DOI: https://doi.org/10.3390/jrfm13030060
View in Google Scholar
Horvath, R., & Petrovski, D. (2012). International stock market integration: Central and South Eastern Europe compared. SSRN Electronic Journal. doi: 10.2139/ ssrn.2078238.
DOI: https://doi.org/10.2139/ssrn.2078238
View in Google Scholar
Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255-259. doi: 10.1016/0165-1765(80)90024-5.
DOI: https://doi.org/10.1016/0165-1765(80)90024-5
View in Google Scholar
Johansen, S. (1988). Statistical analysis of cointegrated vectors. Journal of Economic Dynamics and Control, 12(2?3), 231-254. doi: 10.1016/0165-1889(88) 90041-3.
DOI: https://doi.org/10.1016/0165-1889(88)90041-3
View in Google Scholar
Koop, G., Pesaran, M. H., & Potter, S. M. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1), 119-147. doi: 10.1016/0304-4076(95)01753-4.
DOI: https://doi.org/10.1016/0304-4076(95)01753-4
View in Google Scholar
Krarup, T. (2019). Money and the ?level playing field?: the epistemic problem of European financial market integration. New Political Economy, 1-16. doi: 10.1080/13563467.2019.1685959.
DOI: https://doi.org/10.1080/13563467.2019.1685959
View in Google Scholar
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shinb, Y. (1992). Testing the null hypothesis of stationary against the alternative of a unit root. Journal of Econometrics, 54(1), 159-178. doi: 10.1016/0304-4076(92)90104-Y.
DOI: https://doi.org/10.1016/0304-4076(92)90104-Y
View in Google Scholar
Lăzăroiu, G., Horák, J., & Valášková, K. (2020). Scaring ourselves to death in the time of COVID-19: Pandemic awareness, virus anxiety, and contagious fear. Linguistic and Philosophical Investigations, 19, 114-120. doi: 10.22381/LPI1 920208.
DOI: https://doi.org/10.22381/LPI1920208
View in Google Scholar
Lee, E.-J. (2017). Intra- and inter-regional portfolio diversification strategies under regional market integration: Evidence from U.S. global banks. International Review of Financial Analysis, 54, 1-22. doi: 10.1016/j.irfa.2017.08.001.
DOI: https://doi.org/10.1016/j.irfa.2017.08.001
View in Google Scholar
Levy, H., & Sarnat, M. (1970). International diversification of investment portfolios. American Economic Review, 60(4), 668-675. doi: 10.2307/1818410.
View in Google Scholar
Liu, H., Manzoor, A., Wang, C., Zhang, L., & Manzoor, Z. (2020). The COVID-19 outbreak and affected countries stock markets response. International Journal of Environmental Research and Public Health, 17(8). doi: 10.3390/ijerph17082 800.
DOI: https://doi.org/10.3390/ijerph17082800
View in Google Scholar
Lucey, B. M., & Voronkova, S. (2008). Russian equity market linkages before and after the 1998 crisis: Evidence from stochastic and regime-switching cointegration tests. Journal of International Money and Finance, 27(8), 1303-1324. doi: 10.1016/j.jimonfin.2008.07.004.
DOI: https://doi.org/10.1016/j.jimonfin.2008.07.004
View in Google Scholar
Lütkepohl, H., & Saikkonen, P. (1997). Impulse response analysis in infinite order cointegrated vector autoregressive processes. Journal of Econometrics, 81(1), 127-157. doi: 10.1016/S0304-4076(97)00037-7.
DOI: https://doi.org/10.1016/S0304-4076(97)00037-7
View in Google Scholar
Milos, L. R., Hatiegan, C., Milos, M. C., Barna, F. M., & Botoc, C. (2020). Multifractal detrended fluctuation analysis (MF-DFA) of stock market indexes. Empirical evidence from seven Central and Eastern European markets. Sustainability, 12(2). doi: 10.3390/su12020535.
DOI: https://doi.org/10.3390/su12020535
View in Google Scholar
Moagar-Poladian, S., Clichici, D., & Stanciu, C. V. (2019). The comovement of exchange rates and stock markets in Central and Eastern Europe. Sustainability, 11(14). doi: 10.3390/su11143985.
DOI: https://doi.org/10.3390/su11143985
View in Google Scholar
Nsoesie, E., Okanyene, B.R., Yiyao L., Barnoon, L., & Brownstein, J. (2020). Analysis of hospital traffic and search engine data in Wuhan China indicates early disease activity in the Fall of 2019. Collections: HMS Scholarly Articles. Harvard Medical School.
View in Google Scholar
Özer, M., Kam?şl?, M., & Kam?şl?, S. (2016). The analysis of volatility spillovers between the German and Central and Eastern European (CEE) stock markets by using frequency domain causality test. In Europe and Asia: economic integration prospects. CEMAFI International Association, 165-179.
View in Google Scholar
Perron, P., & Phillips, P. C. B. (1988). Testing for a unit root in a time series regression. Biometrika, 2(75), 335-346. doi: 10.1080/07350015.1992.10509923.
DOI: https://doi.org/10.1093/biomet/75.2.335
View in Google Scholar
Pesaran, H. H., & Shin, Y. (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1), 17-29. doi: 10.1016/S0165-1765(97)00214-0.
DOI: https://doi.org/10.1016/S0165-1765(97)00214-0
View in Google Scholar
Pietrzak, M. B., Fałdziński, M., Balcerzak, A. P., Meluzín, T., & Zinecker, M. (2017). Short-term shocks and long-term relationships of interdependencies among Central European capital markets. Economics and Sociology, 10(1), 61-77. doi: 10.14254/2071-789X.2017/10-1/5.
DOI: https://doi.org/10.14254/2071-789X.2017/10-1/5
View in Google Scholar
Rapaccini, M., Saccani, N., Kowalkowski, C., Paiola, M., & Adrodegari, F. (2020). Navigating disruptive crises through service-led growth: the impact of COVID-19 on Italian manufacturing firms. Industrial Marketing Management, 88, 225-237. doi: 10.1016/j.indmarman.2020.05.017.
DOI: https://doi.org/10.1016/j.indmarman.2020.05.017
View in Google Scholar
Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment, 728. doi: 10.1016/j.scitotenv. 2020.138870.
DOI: https://doi.org/10.1016/j.scitotenv.2020.138870
View in Google Scholar
Seo, J. (2020). Randomization tests for equality in dependence structure. Journal of Business & Economic Statistics, Advance online publication. doi: 10.1080/ 07350015.2020.1753527.
View in Google Scholar
Sheth, J. (2020). Impact of Covid-19 on consumer behavior: Will the old habits return or die? Journal of Business Research, 117, 280-283. doi: 10.1016/j. jbusres.2020.05.059.
DOI: https://doi.org/10.1016/j.jbusres.2020.05.059
View in Google Scholar
Šuleř, P., & Machová, V. (2020). Financial stability in Central European coun-tries: case of the Visegrad four. In F. Uslu (Ed.). Proceedings of the 7th in-ternational conference on education and social sciences (INTCESS 2020). Istanbul: International Organization Center of Academic Research, 1218-1223.
View in Google Scholar
Stoica, O., Diaconasu, D.-E., & Socoliuc, O. R. (2015). Dilemma: regional or international interdependencies in Central and Eastern European stock markets. Procedia Economics and Finance, 20, 601-609. doi: 10.1016/s2212-5671(15) 00114-8
DOI: https://doi.org/10.1016/S2212-5671(15)00114-8
View in Google Scholar
Syllignakis, M., & Kouretas, G. P. (2006). Long and short-run linkages in CEE stock markets: implications for portfolio diversification and stock market integration. SSRN Electronic Journal. doi: 10.2139/ssrn.910507
DOI: https://doi.org/10.2139/ssrn.910507
View in Google Scholar
Tong, C., Chen, J., & Buckle, M. J. (2018). A network visualization approach and global stock market integration. International Journal of Finance and Economics, 23(3), 296-314. doi: 10.1002/ijfe.1617
DOI: https://doi.org/10.1002/ijfe.1617
View in Google Scholar
Tsay, R. S. (2010). Analysis of financial time series. Hoboken, New Jersey: John Willey & Sons.
DOI: https://doi.org/10.1002/9780470644560
View in Google Scholar
Vochozka, M., Horák, J., & Krulický, T. (2020). Innovations in management forecast: time development of stock prices with neural net-works. Marketing and Management of Innovations, 2, 324-339.
DOI: https://doi.org/10.21272/mmi.2020.2-24
View in Google Scholar
Voronkova, S. (2004). Equity market integration in Central European emerging markets: a cointegration analysis with shifting regimes. International Review of Financial Analysis, 13(5), 633-647. doi: 10.1016/j.irfa.2004.02.017.
DOI: https://doi.org/10.1016/j.irfa.2004.02.017
View in Google Scholar
Vrbka, J., & Rowland, Z. (2017). Stock price development forecasting using neural networks. In J. Váchal, M. Vochozka, J. Horák (Eds.). SHS web of conferences - innovative economic symposium 2017: strategic partnership in international trade. Les Ulis: EDP Sciences. doi: 10.1051/shsconf/20173901032.
DOI: https://doi.org/10.1051/shsconf/20173901032
View in Google Scholar
Vrbka, J., Rowland, Z., & Šuleř, P. (2019). Comparison of neural networks and regression time series in estimating the development of the EU and the PRC trade balance. In J. Horák (Ed.). SHS web of conferences: innovative economic symposium 2018 - milestones and trends of world economy (IES2018). Les Ulis: EDP Sciences. doi: 10.1051/shsconf/20196101031.
DOI: https://doi.org/10.1051/shsconf/20196101031
View in Google Scholar
Williams, C. C. (2020). Impacts of the coronavirus pandemic on Europe's tourism industry: addressing tourism enterprises and workers in the undeclared economy. International Journal of Tourism Research. Advance online publication. doi: 10.1002/jtr.2395.
DOI: https://doi.org/10.1002/jtr.2395
View in Google Scholar
Zeren, F., & Hizarci, A. (2020). The impact of COVID-19 coronavirus on stock markets: evidence from selected countries. Journal of Accounting and Finance Reviews, 3(1), 78-84. doi: 10.32951/mufider.706159.
DOI: https://doi.org/10.32951/mufider.706159
View in Google Scholar
Zinecker, M., Balcerzak, A. P., Fałdziński, M., Meluzín, T., & Pietrzak, M. B. (2016). Application of DCC-GARCH model for analysis of interrelations among capital markets of Poland, Czech Republic and Germany. In M. Reiff & P. Gezik (Ed.). Proceedings of the international scientific conference quantitative methods in economics multiple criteria decision making XVIII. Vratn: Letra Interactive, 416-421.
View in Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Equilibrium. Quarterly Journal of Economics and Economic Policy
This work is licensed under a Creative Commons Attribution 4.0 International License.