Spatial weight matrix impact on real estate hierarchical clustering in the process of mass valuation

Authors

DOI:

https://doi.org/10.24136/oc.2019.007

Keywords:

agglomerative clustering, entropy, property mass appraisal, market analysis

Abstract

Research background: The value of the property can be determined on an individual or mass basis. There are a number of situations in which uniform and relatively fast results obtained by means of mass valuation undoubtedly outweigh the advantages of the individual approach. In literature and practice there are a number of different types of models of mass valuation of real estate. For some of them it is postulated or required to group the valued properties into homogeneous subset due to various criteria. One such model is Szczecin Algorithm of Real Estate Mass Appraisal (SAREMA). When using this algorithm, the area to be valued should be divided into the so-called location attractiveness areas (LAZ). Such division can be made in many ways. Regardless of the method of clustering, its result should be assessed, depending on the degree of implementation of the adopted criterion of division quality. A better division of real estate will translate into more accurate valuation results.

Purpose of the article: The aim of the article is to present an application of hierarchical clustering with a spatial constraints algorithm for the creation of LAZ. This method requires the specification of spatial weight matrix to carry out the clustering process. Due to the fact that such a matrix can be specified in a number of ways, the impact of the proposed types of matrices on the clustering process will be described. A modified measure of information entropy will be used to assess the clustering results.

Methods: The article utilises the algorithm of agglomerative clustering, which takes into account spatial constraints, which is particularly important in the context of real estate valuation. Homogeneity of clusters will be determined with the means of information entropy.

Findings & Value added: The main achievements of the study will be to assess whether the type of the distance matrix has a significant impact on the clustering of properties under valuation.

Downloads

Download data is not yet available.

References

Arguelles, M., Benavides, C., & Fernandez, I. (2014). A new approach to the identification of regional clusters: hierarchical clustering on principal components. Applied Economics, 46(21). doi: 10.1080/00036846.2014.904491.

DOI: https://doi.org/10.1080/00036846.2014.904491
View in Google Scholar

Bai, Y. P. & Wang, B. H. (2012). Study on regional land use structure change characteristics in Baolan-Lanqing-Qingzang urban belt based on information entropy and regional entropy. Advanced Materials Research, 518-523. doi: 10.4028/www.scientific.net/AMR.518-523.6024.

DOI: https://doi.org/10.4028/www.scientific.net/AMR.518-523.6024
View in Google Scholar

Bapat, R. B, (2006). Determinant of the distance matrix of a tree with matrix weights, Linear Algebra and its Applications, 416.

DOI: https://doi.org/10.1016/j.laa.2005.02.022
View in Google Scholar

Boongoen, T., & Iam-On, N. (2018). Cluster ensembles: a survey of approaches with recent extensions and applications. Computer Science Review, 28. doi: 10.1016/j.cosrev.2018.01.003.

DOI: https://doi.org/10.1016/j.cosrev.2018.01.003
View in Google Scholar

Bourassa, S. C., Hamelink, F., Hoesli, M., & Macgregor, B. D. (1999). Defining housing submarkets. Journal of Housing Economics, 8(2). doi: 10.1006 /jhec.1999.0246.

DOI: https://doi.org/10.1006/jhec.1999.0246
View in Google Scholar

Cellmer, R. (2013). Use of spatial autocorrelation to build regression models of transaction prices. Real Estate Management and Valuation, 21(4). doi: 10.2478/ remav-2013-0038.

DOI: https://doi.org/10.2478/remav-2013-0038
View in Google Scholar

Dąbrowski, R., & Latos, D. (2015), Possibilities of practical application of the remote sensing data in the real property appraisal. Real Estate Management and Valuation, 23(2). doi: 10.1515/remav-2015-0016.

DOI: https://doi.org/10.1515/remav-2015-0016
View in Google Scholar

Davidson, I., & Ravi, S.S. (2005). Agglomerative hierarchical clustering with constraints: theoretical and empirical results. In: A. M. Jorge, L. Torgo, P. Brazdil, R. Camacho, & J. Gama (Eds.). Knowledge discovery in databases: PKDD 2005. PKDD 2005. Lecture notes in computer science. vol 3721. Berlin, Heidelberg: Springer. doi:10.1007/11564126_1.

DOI: https://doi.org/10.1007/11564126_11
View in Google Scholar

Dedkova, O., & Polyakova, I. (2018). Development of mass valuation in Republic of Belarus. Geomatics And Environmental Engineering, 12(3). doi: 10.7494/ geom.2018.12.3.29.

DOI: https://doi.org/10.7494/geom.2018.12.3.29
View in Google Scholar

Fang, Y. X., & Wang, Y. H. (2012). Selection of the number of clusters via the bootstrap method. Computational Statistics & Data Analysis, 56. doi: 10.1016/ j.csda.2011.09.003.
View in Google Scholar

Getis, A., & Aldstadt, J. (2004). Constructing the spatial weights matrix using a local statistic. Geographical Analysis, 36(2). doi: 10.1111/j.1538-4632.2004. tb01127.x.

DOI: https://doi.org/10.1111/j.1538-4632.2004.tb01127.x
View in Google Scholar

Grover, R. (2016). Mass valuations. Journal of Property Investment & Finance, 34(2). doi: 10.1108/JPIF-01-2016-0001.

DOI: https://doi.org/10.1108/JPIF-01-2016-0001
View in Google Scholar

Guo, G. (2008). Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). International Journal of Geographical Information Science, 22(7).. doi: 10.1080/13658810701674970.

DOI: https://doi.org/10.1080/13658810701674970
View in Google Scholar

Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction. New York: Springer.

DOI: https://doi.org/10.1007/978-0-387-84858-7
View in Google Scholar

Hozer, J., Kokot, S., & Kuźmiński, W. (2002). Methods of statistical analysis of the market in real estate appraisal. Warsaw: PFSRM.
View in Google Scholar

Jahanshiri, E., Buyong, T., & Shariff, A. R. M. (2011). A review of property mass valuation models. Pertanika Journal of Science & Technology, 19.
View in Google Scholar

Kantardzic, M. (2003). Data mining. Concepts, models, methods, and algorithms. Wiley-IEEE Press.
View in Google Scholar

Kauko, T., & d’Amato, M. (Eds.) (2008). Mass appraisal methods. An international perspective for property valuers. Wiley-Blackwell.

DOI: https://doi.org/10.1002/9781444301021
View in Google Scholar

Keskin, B., & Watkins, C. (2016). Defining spatial housing submarkets: exploring the case for expert delineated boundaries. Urban Studies, 54(6). doi: 10.1177/0042098015620351.

DOI: https://doi.org/10.1177/0042098015620351
View in Google Scholar

Kolesnikov, A., Trichina, E., & Kauranne, T. (2015). Estimating the number of clusters in a numerical data set via quantization error modeling. Pattern Recognition, 48(3). doi: 10.1016/j.patcog.2014.09.017.

DOI: https://doi.org/10.1016/j.patcog.2014.09.017
View in Google Scholar

LeSage, J. P., & Pace, R. K. (2014). The biggest myth in spatial econometrics. Econometrics, 2. doi: 10.3390/econometrics2040217.

DOI: https://doi.org/10.3390/econometrics2040217
View in Google Scholar

Ludovisi, A. (2014). Effectiveness of entropy-based functions in the analysis of ecosystem state and development. Ecological Indicators, 36. doi: 10.1016/j. ecolind.2013.09.020.

DOI: https://doi.org/10.1016/j.ecolind.2013.09.020
View in Google Scholar

Mimmack, G. M., Mason, S. J., & Galpin, J. S. (2000), Choice of distance matrices in cluster analysis: defining regions. Journal of Climate, 14. doi: 10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2.

DOI: https://doi.org/10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2
View in Google Scholar

Müller, A. C., & Guido, S. (2016). Introduction to machine learning with python. Sebastopol: O’Reilly.
View in Google Scholar

Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., & French, N. (2003), Real estate appraisal: a review of valuation methods. Journal of Property Investment & Finance, 21(4). doi: 10.1108/14635780310483656.

DOI: https://doi.org/10.1108/14635780310483656
View in Google Scholar

Palm, R. (1978). Spatial segmentation of the urban housing market. Economic Geography, 54(3).

DOI: https://doi.org/10.2307/142835
View in Google Scholar

Raschka, S., & Mirjalili, V. (2017), Python machine learning. Birmingham-Mumbai: Packt Publishing.
View in Google Scholar

Truffet, L. (2018). Shannon entropy reinterpreted. Reports on Mathematical Physics, 81(3). doi:10.1016/S0034-4877(18)30050-8.

DOI: https://doi.org/10.1016/S0034-4877(18)30050-8
View in Google Scholar

Unpingco, J. (2016). Python for probability, statistics, and machine learning. Springer International Publishing.

DOI: https://doi.org/10.1007/978-3-319-30717-6
View in Google Scholar

Wellman, J. F., & Regenauer-Lieb, K. (2012). Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophysics, 526–529. doi:10.1016/j.tecto.2011.05.001.

DOI: https://doi.org/10.1016/j.tecto.2011.05.001
View in Google Scholar

Wu, X., Ma, T., Cao, J., Tian, Y., & Alabdulkarim, A., (2018). A comparative study of clustering ensemble algorithms. Computers and Electrical Engineering, 68. doi:10.1016/j.compeleceng.2018.05.005.

DOI: https://doi.org/10.1016/j.compeleceng.2018.05.005
View in Google Scholar

Zhang, X., & Yu, Y. (2018). Spatial weights matrix selection and model averaging for spatial autoregressive models. Journal of Econometrics, 203. doi: 10.1016/j.jeconom.2017.05.021.

DOI: https://doi.org/10.1016/j.jeconom.2017.05.021
View in Google Scholar

Zurada, J., Levitan, A., & Guan, J. (2011). A comparison of regression and artificial intelligence methods in a mass appraisal context. Journal of Real Estate Research, 33(3).

DOI: https://doi.org/10.1080/10835547.2011.12091311
View in Google Scholar

Downloads

Published

2019-03-31

How to Cite

Gnat, S. (2019). Spatial weight matrix impact on real estate hierarchical clustering in the process of mass valuation. Oeconomia Copernicana, 10(1), 131–151. https://doi.org/10.24136/oc.2019.007

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.