A novel approach to estimating the debt capacity of European SMEs
DOI:
https://doi.org/10.24136/eq.2023.017Keywords:
debt capacity, financial distress, macroeconomic factors, financial constraintsAbstract
Research background: The concept of debt capacity assumes that a maximum value of debt ratio exists that when exceeded triggers unfavourable consequences, such as drop in market value, default or a change in the business' creditworthiness. With the current state of the art there is a priori no theoretical assurance that such a specific value exists, or rather it is represented by an interval of values. Beyond that, our understanding of debt capacity is often limited to a theoretical approximation by firm-specific factors, while the context of macroeconomic factors, especially those critical for SMEs, is neglected.
Purpose of the article: The aim of this paper is to present a novel approach to estimating SMEs' debt capacity. Further, the aim is to answer the question of what firm-level and macroeconomy conditions lead to exhausting the SMEs' debt capacity and under what conditions a specific value of maximum debt capacity could be estimated.
Methods: To estimate the debt capacity, we suggest a use of an information entropy minimising heuristic and the Minimal Description Length Principle. In this approach, the observed feature space is categorised into several regions. In this case, such a region represents a set of firm- and macroeconomy-specific conditions forming the debt capacity of the SMEs. To the best of our knowledge, such an approach has not yet been used in debt capacity applications.
Findings & value added: We found out that the debt ratio itself provides little explanation of exhausted debt capacity, suggesting that high debt levels are compensated for by other factors. By using the suggested approach, a set of more than 100 different regions was analysed. It was found that in case of five regions (sets of conditions) the debt capacity is exhausted, as the high level of debt has significant distress consequences.
Downloads
References
Agarwal, V., & Taffler, R. (2008). Comparison of the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking and Finance, 32(8), 1541–1551. doi: 10.1016/j.jbankfin.2007.07.014.
DOI: https://doi.org/10.1016/j.jbankfin.2007.07.014
View in Google Scholar
Almeida, H., & Campallo, M. (2007). Financial constraints, asset tangibility, and corporate investment. Review of Financial Studies, 20(5), 1429–1460. doi: 10.1093/ rfs/hhm019.
DOI: https://doi.org/10.1093/rfs/hhm019
View in Google Scholar
Almeida, H., Campello, M., & Weisbach, M. S. (2004). The cash flow sensitivity of cash. Journal of Finance, 59, 1777–1804. doi: 10.1111/j.1540-6261.2004.00679.x.
DOI: https://doi.org/10.1111/j.1540-6261.2004.00679.x
View in Google Scholar
Azofra, V., Rodríguez-Sanz, J. A., & Velasco, P. (2020). The role of macroeconomic factors in the capital structure of European firms: How influential is bank debt? International Review of Economics and Finance, 69, 494–514. doi: 10.1016/j.iref.2020. 06.001.
DOI: https://doi.org/10.1016/j.iref.2020.06.001
View in Google Scholar
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71–111. doi: 10.2307/2490171.
DOI: https://doi.org/10.2307/2490171
View in Google Scholar
Beck, T., Demirguc-Kunt, A., Laeven, L., & Maksimovic, V. (2006). The determi-nants of financing obstacles. Journal of International Money and Finance, 25(6), 932–952. doi: 10.1016/j.jimonfin.2006.07.005.
DOI: https://doi.org/10.1016/j.jimonfin.2006.07.005
View in Google Scholar
Bongini, P. Ferrando, A., Rossi, E., & Rossolini, M. (2021). SME access to market-based finance across Eurozone countries. Small Business Economics, 56, 1667–1697. doi: 10.1007/s11187-019-00285-z.
DOI: https://doi.org/10.1007/s11187-019-00285-z
View in Google Scholar
Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145–1159. doi: 10.1016/ S0031-3203(96)00142-2.
DOI: https://doi.org/10.1016/S0031-3203(96)00142-2
View in Google Scholar
Brennan, M., & Schwartz, E. (1978). Corporate income taxes, valuation, and the problem of optimal capital structure. Journal of Business, 51, 103–114. doi: 10.1086/295987.
DOI: https://doi.org/10.1086/295987
View in Google Scholar
Brezingar-Masten, A., & Masten, I. (2012). CART-based selection of bankruptcy predictors for the logit model. Expert Systems with Applications, 39(11), 10153–10159. doi: 10.1016/j.eswa.2012.02.125.
DOI: https://doi.org/10.1016/j.eswa.2012.02.125
View in Google Scholar
Carreira, C., & Silva, F. (2010). No deep pockets: Some stylized empirical results on firms’ financial constraints. Journal of Economic Surveys, 24, 731–753. doi: 10.1111 /j.1467-6419.2009.00619.x.
DOI: https://doi.org/10.1111/j.1467-6419.2009.00619.x
View in Google Scholar
Cathcart, L., Dufour, A., Rossi, L., &. Varotto, S. (2020). The differential impact of leverage on the default risk of small and large firms. Journal of Corporate Fi-nance, 60, 101541. doi: 10.1016/j.jcorpfin.2019.101541.
DOI: https://doi.org/10.1016/j.jcorpfin.2019.101541
View in Google Scholar
Catherine, S., Chaney, T., Huang, Z., Sraer, D., & Thesmar, D. (2022). Quantifying reduced-form evidence on collateral constraints. Journal of Finance, 77, 2143–2181. doi: 10.1111/jofi.13158.
DOI: https://doi.org/10.1111/jofi.13158
View in Google Scholar
Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8, 537–569. doi: 10.1093/rof/8.4.537.
DOI: https://doi.org/10.1093/rof/8.4.537
View in Google Scholar
Civelek, M., Ključnikov, A., Fialova, V., Folvarčná, A., & Stoch, M. (2021). How innovativeness of family-owned SMEs differ depending on their characteris-tics?. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 413–428. doi: 10.24136/eq.2021.015.
DOI: https://doi.org/10.24136/eq.2021.015
View in Google Scholar
Civelek, M., & Krajčík, V. (2022). How do SMEs from different countries perceive export impediments depending on their firm-level characteristics? System ap-proach. Oeconomia Copernicana, 13(1), 55–78. doi: 10.24136/oc.2022.002.
DOI: https://doi.org/10.24136/oc.2022.002
View in Google Scholar
Civelek, M., Krajčík, V., & Fialova, V. (2023). The impacts of innovative and com-petitive abilities of SMEs on their different financial risk concerns: System ap-proach. Oeconomia Copernicana, 14(1), 327–354. doi: 10.24136/oc.2023.009.
DOI: https://doi.org/10.24136/oc.2023.009
View in Google Scholar
Cleary, S. (2006). International corporate investment and the relationships be-tween financial constraint measures. Journal of Banking & Finance, 30, 1559–1580. doi: 10.1016/j.jbankfin.2005.03.023.
DOI: https://doi.org/10.1016/j.jbankfin.2005.03.023
View in Google Scholar
De Moor, L., Wieczorek-Kosmala, M., & Blach, J. (2016). SME debt financing gap: The case of Poland. Transformations in Business & Economics, 15(39), 274–291.
View in Google Scholar
Di Marco, L., & Nieddu, L. (2014). Trigger factors that influence bankruptcy: A comparative and exploratory study. Rivista Italiana di Economia Demografia e Statistica, 68(3/4), 191–198.
View in Google Scholar
Dietsch, M., & Petey, J. (2004). Should SME exposures be treated as retail or cor-porate exposure? A comparative analysis of default probabilities and asset cor-relations in French and German SMEs. Journal of Banking & Finance, 28, 773–788. doi: 10.1016/j.jbankfin.2003.10.006.
DOI: https://doi.org/10.1016/S0378-4266(03)00199-7
View in Google Scholar
Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous features. In A. Prieditis & S. Russell (Eds.). Ma-chine learning: Proceedings of the twelfth international conference. San Francisco: Morgan Kaufmann Publishers.
DOI: https://doi.org/10.1016/B978-1-55860-377-6.50032-3
View in Google Scholar
Ellouze, D., & Mnasri, K. (2020). Business group diversification, financial con-straints, and firm performance: The case of Tunisian group affiliated firms. Journal of Management and Governance, 24, 273–301. doi: 10.1007/s10997-019-0945 4-4.
DOI: https://doi.org/10.1007/s10997-019-09454-4
View in Google Scholar
Erdogan, A. I. (2018). Factors affecting SME access to bank financing: An inter-view study with Turkish bankers. Small Enterprise Research, 25, 23–35. doi: 10.1080/13 215906.2018.1428911.
DOI: https://doi.org/10.1080/13215906.2018.1428911
View in Google Scholar
Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In R. Bajcsy (Ed.). International joint conference on artificial intelligence. San Francisco: Morgan Kaufmann.
View in Google Scholar
Fazzari, S., Hubbard, R., & Petersen, B. (1988). Financing constraints and corpo-rate investment. Brookings Papers on Economic Activity, 1, 141–195. doi: 10.2307/253 4426.
DOI: https://doi.org/10.2307/2534426
View in Google Scholar
Filipe, S. F., Grammatikos, T., & Michala, D. (2016). Forecasting distress in European SME portfolios. Journal of Banking & Finance, 64, 112–135. doi: 10.1016/j.jbankf in.2015.12.007.
DOI: https://doi.org/10.1016/j.jbankfin.2015.12.007
View in Google Scholar
Frydman, H., Altman, E. I., & Kao, D. L. (1985). Introduction recursive partition-ing for financial classification: The case of financial distress. Journal of Finance, 40(1), 269–291. doi: 10.1111/j.1540-6261.1985.tb 04949.x.
DOI: https://doi.org/10.1111/j.1540-6261.1985.tb04949.x
View in Google Scholar
Gilchrist, S., & Himmelberg, C. P. (1995). Evidence on the role of cash flow in investment. Journal of Monetary Economics, 36, 541–572. doi: 10.1016/0304-3932 (95)01223-0.
DOI: https://doi.org/10.1016/0304-3932(95)01223-0
View in Google Scholar
Gungoraydinoglu, A., & Öztekin, Ö. (2011). Firm- and country-level determinants of corporate leverage: Some new international evidence. Journal of Corporate Finance, 17(5), 1457–1474. doi: 10.1016/j.jcorpfin.2011.08.004.
DOI: https://doi.org/10.1016/j.jcorpfin.2011.08.004
View in Google Scholar
Gupta, J., Gregoriou, A., & Healy, J. (2015). Forecasting bankruptcy for SMEs using hazard function: To what extent does size matter? Review of Quantitative Finance and Accounting, 45(4), 845–869. doi: 10.1007/s11156-014-0458-0.
DOI: https://doi.org/10.1007/s11156-014-0458-0
View in Google Scholar
Hahn, J., & Lee, H. (2005). Financial constraints, debt capacity, and the cross sec-tion of stock returns. Working paper, University of Washington and Korea Develop-ment Institute.
DOI: https://doi.org/10.2139/ssrn.676109
View in Google Scholar
Hand, D. J., & Till, R. J. (2001). A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning, 45, 171–186. doi: 10.1023/A:1010920819831.
DOI: https://doi.org/10.1023/A:1010920819831
View in Google Scholar
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36. doi: 10.114 8/radiology.143.1.7063747.
DOI: https://doi.org/10.1148/radiology.143.1.7063747
View in Google Scholar
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer-Verlag. doi: 10.1007 /978-0-387-84858-7.
DOI: https://doi.org/10.1007/978-0-387-84858-7
View in Google Scholar
Hess, D., & Immenkötter, P. (2014). How much is too much? Debt capacity and financial flexibility. CFR Working Paper, University of Cologne, Centre for Financial Research (CFR), 14-03.
View in Google Scholar
Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. Wiley.
DOI: https://doi.org/10.1002/0471722146
View in Google Scholar
Jin, Y., Luo, M., & Wan, C. (2018). Financial constraints, macro-financing envi-ronment, and post-crisis recovery of firms. International Review of Economics and Finance, 55, 54–67. doi: 10.1016/j.iref.2018.01.007.
DOI: https://doi.org/10.1016/j.iref.2018.01.007
View in Google Scholar
Karas, M., & Režňáková, M. (2021). The role of financial constraint factors in pre-dicting SME default. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(4), 865–889. doi: 10.24136/eq.2021.032.
DOI: https://doi.org/10.24136/eq.2021.032
View in Google Scholar
Kennedy, P. (2005). Oh no! I Got the wrong sign! What should I do? Journal of Economic Education, 36(1), 77–92. doi : 10.3200/JECE.36.1.77-92.
DOI: https://doi.org/10.3200/JECE.36.1.77-92
View in Google Scholar
Ključnikov, A., Civelek, M., Fialova, V., & Folvarčná, A. (2021). Organizational, local, and global innovativeness of family-owned SMEs depending on firm-individual level characteristics: evidence from the Czech Republic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(1), 169–184. doi: 10.24136/ eq.2021.006.
DOI: https://doi.org/10.24136/eq.2021.006
View in Google Scholar
Ključnikov, A., Civelek, M., Krajčík, V., Novák, P., & Červinka, M. (2022). Finan-cial performance and bankruptcy concerns of SMEs in their export deci-sion. Oeconomia Copernicana, 13(3), 867–890. doi: 10.24136/oc.2022.025.
DOI: https://doi.org/10.24136/oc.2022.025
View in Google Scholar
Kjenstad, E. C., & Kumar, A. (2022). The effect of real estate prices on peer firms. Real Estate Economics, 50, 1022–1053. doi: 10.1111/1540-6229.12362.
DOI: https://doi.org/10.1111/1540-6229.12362
View in Google Scholar
Lee, C., Wang, C., Yin, C., & Choo, M. (2021). Do firm characteristics affect debt capacity? Evidence in CEO succession. Applied Economics, 53(48), 5567–5583. doi: 10.1080/00036846.2021.1925626.
DOI: https://doi.org/10.1080/00036846.2021.1925626
View in Google Scholar
Leary, M., & Roberts, M. (2010). The pecking order, debt capacity, and infor-mation asymmetry. Journal of Financial Economics, 95, 332–355. doi: 10.1016/j.jfineco. 2009.10.009.
DOI: https://doi.org/10.1016/j.jfineco.2009.10.009
View in Google Scholar
Lemmon, M., & Roberts, M. (2010). The response of corporate financing and in-vestment to changes in the supply of credit. Journal of Financial and Quantitative Analysis, 45, 555–587. doi: 10.1017/S0022109010000256.
DOI: https://doi.org/10.1017/S0022109010000256
View in Google Scholar
León-Gómez, A., Santos-Jaén, J. M., Ruiz-Palomo, D., & Palacios-Manzano, M. (2022). Disentangling the impact of ICT adoption on SMEs performance: The mediating roles of corporate social responsibility and innovation. Oeconomia Copernicana, 13(3), 831–866. doi: 10.24136/oc.2022.024.
DOI: https://doi.org/10.24136/oc.2022.024
View in Google Scholar
Li, H., & Sun, J. (2009). Predicting business failure using multiple case-based rea-soning combines with support vector machine. Expert Systems with Applications, 36(6), 10085–10096. doi: 10.1016/j.eswa.2009.01.013.
DOI: https://doi.org/10.1016/j.eswa.2009.01.013
View in Google Scholar
Ling, C. X., & Zhang, H. (2002). Toward Bayesian classifiers with accurate probabilities. In M. S. Chen, P. S. Yu, & B. Liu (Eds). Advances in knowledge discovery and data mining. PAKDD 2002. Lecture notes in computer science. Berlin, Heidel-berg: Springer.
DOI: https://doi.org/10.1007/3-540-47887-6_12
View in Google Scholar
Marchica, M. T., & Mura, R. (2010). Financial flexibility, investment ability, and firm value: Evidence from firms with spare debt capacity. Financial Manage-ment, 39(4), 1339–1365. doi: 10.2139/ssrn.891562.
DOI: https://doi.org/10.1111/j.1755-053X.2010.01115.x
View in Google Scholar
McGuinness, G., Hogan, T., & Powell, R. (2018). European trade credit use and SME survival. Journal of Corporate Finance, 49, 81–103. doi: 10.1016/j.jcorpfin.2017.12 .005.
DOI: https://doi.org/10.1016/j.jcorpfin.2017.12.005
View in Google Scholar
Mulford, C. W., & Comiskey, E. E. (2002). The financial numbers game: Detecting creative accounting practices. New York: John Wiley & Sons.
View in Google Scholar
Musso, P., & Schiavo, S. (2008). The impact of financial constraints on firm surviv-al and growth. Journal of Evolutionary Economics, 18, 135–149. doi: 10.1007/s00191-007-0087-z.
DOI: https://doi.org/10.1007/s00191-007-0087-z
View in Google Scholar
Myers, S. C. (1977). Determinants of corporate borrowing. Journal of Financial Economics, 5, 147–175. doi: 10.1016/0304-405X(77)90015-0.
DOI: https://doi.org/10.1016/0304-405X(77)90015-0
View in Google Scholar
North, D., Baldock, R., & Ekanem, I. (2010). Is there a debt finance gap relating to Scottish SMEs? A demand-side perspective. Venture Capital, 12(3), 173–192. doi: 10.1080/13691061003658670.
DOI: https://doi.org/10.1080/13691061003658670
View in Google Scholar
Psillaki, M., Tsolas, I. T., & Margaritis, M. (2010). Evaluation of credit risk based on firm performance. European Journal of Operational Research, 201(3), 873–881. doi: 10.1016/j.ejor.2009.03.032.
DOI: https://doi.org/10.1016/j.ejor.2009.03.032
View in Google Scholar
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74(1), 101–124. doi: 10.1086/209665.
DOI: https://doi.org/10.1086/209665
View in Google Scholar
Shyam-Sunder, L., & Myears, S. C. (1999). Testing static tradeoff against pecking order models of capital structure. Journal of Financial Economics, 51, 219–244. doi: 10.1016/S0304-405X(98)00051-8.
DOI: https://doi.org/10.1016/S0304-405X(98)00051-8
View in Google Scholar
Stiglitz, J. E. (1972). Some aspects of the pure theory of corporate finance: Bank-ruptcies and takeovers. Bell Journal of Economics and Management Science, 3(2), 458–482. doi: 10.2307/3003033.
DOI: https://doi.org/10.2307/3003033
View in Google Scholar
Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market, and macroeconomic varia-bles. International Review of Financial Analysis, 30, 394–419. doi: 10.1016/j.irfa. 2013.02.013.
DOI: https://doi.org/10.1016/j.irfa.2013.02.013
View in Google Scholar
Tomášková, E., & Kaňovská, L. (2022). Impact of cooperation flexibility on innova-tion flexibility in SMEs. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(2), 533–566. doi: 10.24136/eq.2022.019.
DOI: https://doi.org/10.24136/eq.2022.019
View in Google Scholar
Traczynski, J. (2017). Firm default prediction: A Bayesian model-averaging ap-proach. Journal of Financial and Quantitative Analysis, 52(3), 1211–1245. doi: 10.1017/S002210901700031X.
DOI: https://doi.org/10.1017/S002210901700031X
View in Google Scholar
Ullah, B. (2020). Financial constraints, corruption, and SME growth in transition economies. Quarterly Review of Economics and Finance, 75, 120–132. doi: 10.1016/ j.qref.2019.05.009.
DOI: https://doi.org/10.1016/j.qref.2019.05.009
View in Google Scholar
Welc, J. (2017). EBITDA vs. cash flows in bankruptcy prediction on the Polish capital market. European Financial and Accounting Journal, 12(2), 91–103. doi: 10.18267 /j.efaj.183.
DOI: https://doi.org/10.18267/j.efaj.183
View in Google Scholar
West, B. T., Welch, K. B., & Gałecki, A. T. (2014). Linear mixed models. A practical guide using statistical software. New York: CRC Press.
DOI: https://doi.org/10.1201/b17198
View in Google Scholar
Whited, T. M. (1992). Debt, liquidity constraints, and corporate investment: Evi-dence from panel data. Journal of Finance, 47, 1425–1460. doi: 10.1111/j.1540-6261.1992.tb04664.x.
DOI: https://doi.org/10.1111/j.1540-6261.1992.tb04664.x
View in Google Scholar
Virglerova, Z., Ivanova, E., Dvorsky, J., Belas, J., & Krulický, T. (2021). Selected factors of internationalisation and their impact on the SME perception of the market risk. Oeconomia Copernicana, 12(4), 1011–1032. doi: 10.24136/oc.2021.033.
DOI: https://doi.org/10.24136/oc.2021.033
View in Google Scholar
Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industrial firms: Logistic analysis. Journal of Business Finance and Accounting, 12(1), 19–45. doi: 10.1111/j.1468-5957.1985.tb00077.x.
DOI: https://doi.org/10.1111/j.1468-5957.1985.tb00077.x
View in Google Scholar