Artificial intelligence in predicting the bankruptcy of non-financial corporations

Authors

DOI:

https://doi.org/10.24136/oc.2022.035

Keywords:

engineering industry, automotive industry, bankruptcy prediction, Logistic regression, artificial intelligence, neural network

Abstract

Research background: In a modern economy, full of complexities, ensuring a business' financial stability, and increasing its financial performance and competitiveness, has become especially difficult. Then, monitoring the company's financial situation and predicting its future development becomes important. Assessing the financial health of business entities using various models is an important area in not only scientific research, but also business practice.

Purpose of the article: This study aims to predict the bankruptcy of companies in the engineering and automotive industries of the Slovak Republic using a multilayer neural network and logistic regression. Importantly, we develop a novel an early warning model for the Slovak engineering and automotive industries, which can be applied in countries with undeveloped capital markets.

Methods: Data on the financial ratios of 2,384 companies were used. We used a logistic regression to analyse the data for the year 2019 and designed a logistic model. Meanwhile, the data for the years 2018 and 2019 were analysed using the neural network. In the prediction model, we analysed the predictive performance of several combinations of factors based on the industry sector, use of the scaling technique, activation function, and ratio of the sample distribution to the test and training parts.

Findings & value added: The financial indicators ROS, QR, NWC/A, and PC/S reduce the likelihood of bankruptcy. Regarding the value of this work, we constructed an optimal network for the automotive and engineering industries using nine financial indicators on the input layer in combination with one hidden layer. Moreover, we developed a novel prediction model for bankruptcy using six of these indicators. Almost all sampled industries are privatised, and most companies are foreign owned. Hence, international companies as well as researchers can apply our models to understand their financial health and sustainability. Moreover, they can conduct comparative analyses of their own model with ours to reveal areas of model improvements.

Downloads

Download data is not yet available.

References

Abid, I., Ayadi, R., Guesmi, K., & Mkaouar, F. (2022). A new approach to deal with variable selection in neural networks: an application to bankruptcy pre-diction. Annals of Operations Research, 313(2), 605?623. doi: 10.1007/s10479-021-04236-4.

DOI: https://doi.org/10.1007/s10479-021-04236-4
View in Google Scholar

Act No. 513/1991 Coll. in commercial code; 2013. Bratislava: Iura Edition.
View in Google Scholar

Act No. 7/2005 Coll. bankruptcy and restructuring; 2013. Bratislava: Iura Edition.
View in Google Scholar

Arafat, M. Y., Hoque, S., & Farid, D. M. (2017). Cluster-based under-sampling with random forest for multi-class imbalanced classification. In 11th interna-tional conference on software, knowledge, information management and ap-plications (SKIMA) (pp. 1?6). Malabe: IEEE. doi: 10.1109/SKIMA.2017.8294 105.

DOI: https://doi.org/10.1109/SKIMA.2017.8294105
View in Google Scholar

Ayadi, A. M., Lazrak, S., & Welch, R. (2017). Determinants of bankruptcy regime choice for Canadian public firms. Research in International Business and Finance, 42, 161?172. doi: 10.1016/j.ribaf.2017.04.043.

DOI: https://doi.org/10.1016/j.ribaf.2017.04.043
View in Google Scholar

Belas, J., Cepel, M., Kliuchnikava, Y., & Vrbka, J. (2020). Market risk in the SMEs segment in the Visegrad group countries. Transformations in Business and Economics, 19(3), 678?693.
View in Google Scholar

Brozyna, J., Mentel, G., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistic sector in Poland and Slovakia. Transformations in Business and Economics, 15(1), 93?114.
View in Google Scholar

Civelek, M., Gajdka, K., Svetlik, J., & Vavrecka, V. (2020a). Differences in the usage of online marketing and social media tools: evidence from Czech, Slo-vakian and Hungarian SMEs. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(3), 537?563. doi: 10.24136/eq.2020.024.

DOI: https://doi.org/10.24136/eq.2020.024
View in Google Scholar

Civelek, M., Kljucnikov, A., Vavrecka, V., & Gajdka, K. (2020b). The usage of technology-enabled marketing tools by smes and their bankruptcy concerns: evidence from Visegrad countries. Acta Montanistica Slovaca, 25(3), 263?273. doi: 10.46544/AMS.v25i3.1.

DOI: https://doi.org/10.46544/AMS.v25i3.1
View in Google Scholar

Civelek, M., Kljucnikov, A., Fialova, V., Folvarcna, A., & Stoch, M. (2021). How innovativeness of family-owned SMEs differ depending on their characteris-tics? Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 413?428. doi: 10.24136/eq.2021.015.

DOI: https://doi.org/10.24136/eq.2021.015
View in Google Scholar

Derindag, O. F., Lambovska, M., & Todorova, D. (2021). Innovation development factors: Switzerland experience. Pressburg Economic Review, 1(1), 57?65.
View in Google Scholar

Dube, F., Nzimande, N., & Muzindutsi, P. F. (2021). Application of artificial neural networks in predicting financial distress in the JSE financial services and manufacturing companies. Journal of Sustainable Finance & Investment. Advance online publication. doi: 10.1080/20430795.2021.2017257.

DOI: https://doi.org/10.1080/20430795.2021.2017257
View in Google Scholar

Fitriyaningsih, I., Tampubolon, A. R., Lumbanraja, H. L., Pasaribu G. E., & Sito-rus, P. S. A. (2018). Implementation of artificial neural network to predict S&P 500 stock closing price. Journal of Physics: Conference Series, 1175, 012107. doi: 10.1088/1742- 6596/1175/1/012107.

DOI: https://doi.org/10.1088/1742-6596/1175/1/012107
View in Google Scholar

Fitzpatrik, P. J. (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies. Certified Public Accountant, 6, 727?731.
View in Google Scholar

Garcia, J. (2022). Bankruptcy prediction using synthetic sampling. Machine Learning with Applications, 9, 100343. doi: 10.1016/j.mlwa.2022.100343.

DOI: https://doi.org/10.1016/j.mlwa.2022.100343
View in Google Scholar

Genriha, I., Pettere, G., & Voronova, I. (2011). Entrepreneurship insolvency risk management: case Latvia. International Journal of Banking, Accounting and Finance, 3(1), 31?46. doi: 10.1504/IJBAAF.2011.039370.

DOI: https://doi.org/10.1504/IJBAAF.2011.039370
View in Google Scholar

Grumstrup, E. J., Sorensen, T., Misiuna, J., & Pachocka, M. (2021). Immigration and voting patterns in the European Union: evidence from five case studies and cross-country analysis. Migration Letters, 18(5), 573?589. doi: 10.33182/ml.v1 8i5.943.

DOI: https://doi.org/10.33182/ml.v18i5.943
View in Google Scholar

Gulka, M. (2016). Bankruptcy prediction model of commercial companies operat-ing in the conditions of the Slovak Republic. Forum Statisticum Slovacum, 12, 16?22.
View in Google Scholar

Harumova, A., & Janisova, M. (2014). Rating Slovak enterprises by scoring func-tions. Ekonomicky Casopis (Journal of Economy), 62(5), 522?539.
View in Google Scholar

Horak, J., Vrbka J., & Suler, P. (2020a). Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison. Journal of Risk and Financial Management, 13(3), 60. doi: 10.3390/jrfm13030060.

DOI: https://doi.org/10.3390/jrfm13030060
View in Google Scholar

Horak, J., Krulicky, T., Rowland, Z., & Machova, V. (2020b). Creating a compre-hensive method for the evaluation of a company. Sustainability, 12(21), 1?23. doi: 10.3390/su12219114.

DOI: https://doi.org/10.3390/su12219114
View in Google Scholar

Horvathova, J., & Mokrisova, M. (2020). Comparison of the results of a data envelopment analysis model and logit model in assessing business financial health. Information, 11(3), 160. doi: 10.3390/info11030160.

DOI: https://doi.org/10.3390/info11030160
View in Google Scholar

Horvathova, J., Mokrisova, M., & Petruska, I. (2021). Selected methods of pre-dicting financial health of companies: neural networks versus discriminant analysis. Information, 12(12), 505. doi: 10.3390/info12120505.

DOI: https://doi.org/10.3390/info12120505
View in Google Scholar

Hsieh, W. K, Liu, S. M., & Hsieh, S. Y. (2006). Hybrid neural network bankruptcy prediction: an integration of financial ratios, intellectual capital ratios, MDA, and neural network learning. In Proceedings of the 9th joint international con-ference on information sciences (JCIS-06). Advances in intelligent systems re-search. Atlantis Press. doi: 10.2991/jcis.2006.323.

DOI: https://doi.org/10.2991/jcis.2006.323
View in Google Scholar

Hurtosova, J. (2009). Construction of a rating model, a tool for assessing the creditworthiness of a company. Bratislava: Economic University in Bratislava.
View in Google Scholar

Charambous, C. H., Charitou, A., & Kaourou, F. (2000). Comparative analysis of artificial neural network models: application in bankruptcy prediction. Annals of Operations Research, 99(1), 403?425. doi: 10.1023/A:1019292321322.

DOI: https://doi.org/10.1023/A:1019292321322
View in Google Scholar

Chen, H. J., Huang, S. Y., & Lin, Ch. S. (2009). Alternative diagnosis of corporate bankruptcy: a neuro fuzzy approach. Expert Systems with Applications, 36(4), 7710?7720. doi: 10.1016/j.eswa.2008.09.023.

DOI: https://doi.org/10.1016/j.eswa.2008.09.023
View in Google Scholar

Chen, Y. S., Lin, Ch. K., Lo, Ch. M., Chen, S. F., & Liao, Q. J. (2021). Compara-ble studies of financial bankruptcy prediction using advanced hybrid intelli-gent classification models to provide early warning in the electronics industry. Mathematics, 9(20), 2622. doi: 10.3390/math9202622.

DOI: https://doi.org/10.3390/math9202622
View in Google Scholar

Chung, Ch. Ch., Chen, T. S., Lin, L. H., Lin, Y. Ch., & Lin, Ch. M. (2016). Bank-ruptcy prediction using cerebellar model neural networks. International Jour-nal of Fuzzy Systems, 18(2), 160?167. doi: 10.1007/s40815-015-0121-5.

DOI: https://doi.org/10.1007/s40815-015-0121-5
View in Google Scholar

Iturriaga, F. J. L., & Sanz, I. P. (2015). Bankruptcy visualization and prediction using neural networks: a study of U.S. commercial banks. Expert Systems with Applications, 42(6), 2857?2869. doi: 10.1016/j.eswa.2014.11.025.

DOI: https://doi.org/10.1016/j.eswa.2014.11.025
View in Google Scholar

Jabeur, S. B. (2017). Bankruptcy prediction using partial least squares logistic regression. Journal of Retailing and Consumer Services, 36, 197?202. doi: 10.1016/j.jretconser.2017.02.005.

DOI: https://doi.org/10.1016/j.jretconser.2017.02.005
View in Google Scholar

Jakubik, P., & Teply, P. (2011). The JT index as an indicator of financial stability of corporate sector. Prague Economic Papers, 20(2), 157?176. doi: 10.18267 /j.pep.394.

DOI: https://doi.org/10.18267/j.pep.394
View in Google Scholar

Jardin, P. (2018). Failure pattern-based ensembles applied to bankruptcy forecast-ing. Decision Support Systems, 107, 64?77. doi: 10.1016/j.dss.2018.01.003.

DOI: https://doi.org/10.1016/j.dss.2018.01.003
View in Google Scholar

Jencova, S., Stefko, R., & Vasanicova, P. (2020). Scoring model of the financial health of the electrical engineering industry?s non-financial corporations. Energies, 13(17), 1?17. doi: 10.3390/en13174364.

DOI: https://doi.org/10.3390/en13174364
View in Google Scholar

Kabir, H. (2021). Notion of belonging in the nation-state: gendered construction of international migration aspirations among university students in Bangla-desh. Migration Letters, 18(4), 463?476. doi: 10.33182/ml.v18i4.1158.

DOI: https://doi.org/10.33182/ml.v18i4.1158
View in Google Scholar

Kalinova, E. (2021). Artificial intelligence for cluster analysis: case study of transport companies in Czech Republic. Journal of Risk and Financial Management, 14(9), 411. doi: 10.3390/jrfm14090411.

DOI: https://doi.org/10.3390/jrfm14090411
View in Google Scholar

Kasgari, A. A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2013). Prediction of bankruptcy Iranian corporations through artificial neural network and probit-based analyses. Neural Computing and Applications, 23, 927?936. doi: 10.1007 /s00521-012-1017-z.

DOI: https://doi.org/10.1007/s00521-012-1017-z
View in Google Scholar

Khan, K. A., Dankiewicz, R., Kliuchnikava, Y., & Olah, J. (2020). How do entre-preneurs feel bankruptcy? International Journal of Entrepreneurial Knowledge, 8(1), 89?101. doi:10.37335/ijek.v8i1.103.

DOI: https://doi.org/10.37335/ijek.v8i1.103
View in Google Scholar

Kim, S. Y. (2011). Prediction of hotel bankruptcy using support vector machine, artificial neural network, logistic regression, and multivariate discriminant analysis. Service Industries Journal, 31(3), 441?468. doi: 10.1080/026420608 02712848.

DOI: https://doi.org/10.1080/02642060802712848
View in Google Scholar

Kim, M. J., & Kang, D. K. (2010). Ensemble with neural networks for bankruptcy prediction. Expert Systems with Applications, 37(4), 3373?3379. doi: 10.1016/j.eswa.2009.10.012.

DOI: https://doi.org/10.1016/j.eswa.2009.10.012
View in Google Scholar

Kim, S., Mun, B. M., & Bae, S. J. (2018). Data depth based support vector ma-chines for predicting corporate bankruptcy. Applied Intelligence, 48(3), 791?804. doi: 10.1007/s10489-017-1011-3.

DOI: https://doi.org/10.1007/s10489-017-1011-3
View in Google Scholar

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990). Stock market predic-tion system with modular neural networks. In 1990 IJCNN international joint conference on neural networks (IJCNM-90), INT Neural Network SOC, San Diego: IEEE. doi: 10.1109/IJCNN.1990.137535.

DOI: https://doi.org/10.1109/IJCNN.1990.137535
View in Google Scholar

Kitowski, J., Kowal-Pawul, A., & Lichota, W. (2022). Identifying symptoms of bankruptcy risk based on bankruptcy prediction models - a case study of Po-land. Sustainability, 14(3), 416. doi: 10.3390/su14031416.

DOI: https://doi.org/10.3390/su14031416
View in Google Scholar

Kliestik, T., Vrbka, J., & Rowland, Z. (2018). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium-Quarterly Journal of Economics and Economic Policy, 13(3), 569?593. doi: 10.24136/e q.2018.028.

DOI: https://doi.org/10.24136/eq.2018.028
View in Google Scholar

Kljucnikov, A., Civelek, M., Polach, J., Mikolas, Z., & Banot, M. (2020a). How do security and benefits instill trustworthiness of a digital local currency? Oeconomia Copernicana, 11(3), 433?465. doi: 10.24136/oc.2020.018.

DOI: https://doi.org/10.24136/oc.2020.018
View in Google Scholar

Kljucnikov, A., Civelek, M., Voznakova, I., & Krajcik, V. (2020b). Can discounts expand local and digital currency awareness of individuals depending on their characteristics? Oeconomia Copernicana, 11(2), 239?266. doi: 10.24136/oc.20 20.010.

DOI: https://doi.org/10.24136/oc.2020.010
View in Google Scholar

Kljucnikov, A., Civelek, M., Fialova, V., & Folvarcna, A. (2021). Organizational, local, and global innovativeness of family-owned SMEs depending on firm-individual level characteristics: evidence from the Czech Republic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(1), 169?184. doi: 10.24136/eq.2021.006.

DOI: https://doi.org/10.24136/eq.2021.006
View in Google Scholar

Kolkova, A., & Kljucnikov, A. (2021). Demand forecasting: an alternative ap-proach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 863?894. doi: 10.24136/oc.2021.028.

DOI: https://doi.org/10.24136/oc.2021.035
View in Google Scholar

Korol, T. (2019). Dynamic bankruptcy prediction models for European enterpris-es. Journal of Risk and Financial Management, 12(4), 185. doi: 10.3390/jrfm120 40185.

DOI: https://doi.org/10.3390/jrfm12040185
View in Google Scholar

Korol, T., & Fotiadis, A. K. (2022). Implementing artificial intelligence in fore-casting the risk of personal bankruptcies in Poland and Taiwan. Oeconomia Copernicana, 13(2), 407?438. doi: 10.24136/oc.2022.013.

DOI: https://doi.org/10.24136/oc.2022.013
View in Google Scholar

Kovacova, M. C, & Kliestik, T. (2017). Logit and probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economy Policy, 12(4), 775?791. doi: 10.24136/eq.v12i4.40.

DOI: https://doi.org/10.24136/eq.v12i4.40
View in Google Scholar

Kral, P., Musa, H., Lazaroiu, G., Misankova, M., & Vrbka, J. (2018). Comprehen-sive assessment of the selected indicators of financial analysis in the context of failing companies. Journal of International Studies. Szczecin, 11(4), 282?294. doi: 10.14254/2071-8330.2018/11-4/20.

DOI: https://doi.org/10.14254/2071-8330.2018/11-4/20
View in Google Scholar

Krulicky, T., Kalinova, E., & Kucera, J. (2020). Machine learning prediction of USA export to PRC in context of mutual sanction. Littera Scripta, 13(1), 83?101. doi: 10.36708/Littera_Scripta2020/1/6.

DOI: https://doi.org/10.36708/Littera_Scripta2020/1/6
View in Google Scholar

Lee, K. Ch., Han, I., & Kwon, Y. (1996). Hybrid neural network models for bank-ruptcy predictions. Decision Support Systems, 18, 63?72. doi: 10.1016/0167-9236(96)00018-8.

DOI: https://doi.org/10.1016/0167-9236(96)00018-8
View in Google Scholar

Lyocsa, S., Vasanicova, P., Misheva, B. H., & Vateha, M.D. (2022). Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets. Financial Innovation, 8(1), 32. doi: 10.1186/s40854-022-0033 8-5.

DOI: https://doi.org/10.1186/s40854-022-00338-5
View in Google Scholar

Marcinkevicius, R., & Kanapickiene, R. (2014). Bankruptcy prediction in the sector of construction in Lithuania. Procedia Social And Behavioral Sciences. 156, 553?557. doi: 10.1016/j.sbspro.2014.11.239.

DOI: https://doi.org/10.1016/j.sbspro.2014.11.239
View in Google Scholar

Merkevicius, E., Garsva, G., & Girdzijauskas, S. (2006). A hybrid SOM?Altman model for bankruptcy prediction. In V. N. Alexandrov, G. D. VanAlbada, P. M. A. Sloot & J. Dongarra (Eds.). Conference: computational science ? ICCS 2006, 6th international conference, reading (pp. 364?371). Berlin: Springer-Verlag.

DOI: https://doi.org/10.1007/11758549_53
View in Google Scholar

Metzker, Z., Marousek, J., Zvarikova, K., & Hlawiczka, R. (2021). The perception of SMEs bankruptcy concerning CSR implementation. International Journal of Entrepreneurial Knowledge, 9(2), 85?95. doi: 10.37335/ijek.v9i2.133.

DOI: https://doi.org/10.37335/ijek.v9i2.146
View in Google Scholar

Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics and Sociology, 9(4), 101?118. doi: 10.14254/2071-789X.2016/9-4/6.

DOI: https://doi.org/10.14254/2071-789X.2016/9-4/6
View in Google Scholar

Nachev, A., Hill, S., & Barry, Ch. (2010). Fuzzy, distributed, instance counting, and default artmap neural networks for financial diagnosis. International Journal of Information Technology & Decision Making, 9(6), 959?978. doi: 10.1142/S0219622010004111.

DOI: https://doi.org/10.1142/S0219622010004111
View in Google Scholar

Neves, J. C., & Vieira, A. (2006). Improving bankruptcy prediction with hidden layer learning vector quantization. European Accounting Review, 15(2), 253?271. doi: 10.1080/09638180600555016.

DOI: https://doi.org/10.1080/09638180600555016
View in Google Scholar

Noga, T., & Adamowicz, K. (2021). Forecasting bankruptcy in the wood industry. European Journal of Wood and Wood Products, 79, 735?743. doi: 10.1007/s00 107-020-01620-y.

DOI: https://doi.org/10.1007/s00107-020-01620-y
View in Google Scholar

Nyitrai, T., & Virag, M. (2019). The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Economic Planning Sciences, 67, 34?42. doi: 10.1016/j.seps.2018.08.004.

DOI: https://doi.org/10.1016/j.seps.2018.08.004
View in Google Scholar

Obradovic, D. B., Jaksic, D., Rupic, I. B., & Andric, M. (2018). Insolvency prediction model of the company: the case of the Republic of Serbia. Economic Research-Ekonomska Istrazivanja, 31(1), 139?157. doi: 10.1080/1331677X.20 17.1421990.

DOI: https://doi.org/10.1080/1331677X.2017.1421990
View in Google Scholar

Ocal, M. E., Oral, E. L., Erdis, E., & Vural, G. (2007). Industry financial ratios?application of factor analysis in Turkish construction industry. Building and Environment, 42(1), 385?392. doi: 10.1016/j.buildenv.2005.07.023.

DOI: https://doi.org/10.1016/j.buildenv.2005.07.023
View in Google Scholar

O´Leary, D. E. (1998). Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Man-agement, 7, 187?197. doi: 10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7.

DOI: https://doi.org/10.1002/(SICI)1099-1174(199809)7:3<187::AID-ISAF144>3.0.CO;2-7
View in Google Scholar

Papana, A., & Spyridou, A. (2020). Bankruptcy prediction: the case of the Greek market. Forecasting, 2(4), 505?525. doi: 10.3390/forecast2040027.

DOI: https://doi.org/10.3390/forecast2040027
View in Google Scholar

Peat, M., & Jones, S. (2012). Using neural nets to combine information sets in corporate bankruptcy prediction. Intelligent Systems in Accounting Finance & Management, 19(2), 90?101. doi: 2350/10.1002/isaf.334.

DOI: https://doi.org/10.1002/isaf.334
View in Google Scholar

Pozorska, J., & Scherer, M. (2018). Company bankruptcy prediction with neural networks. In L. Rutkowski, R. Scherer, M. Korytkowski, W. Pedrycz, R. Ta-deusiewicz & J. Zurada (Eds). Artificial intelligence and soft computing. Lec-ture notes in computer science. Springer, Cham. doi: 10.1007/978-3-319-91253 -0_18.

DOI: https://doi.org/10.1007/978-3-319-91253-0_18
View in Google Scholar

Privara, A., & Rievajová, E. (2021). Migration governance in Slovakia during the COVID-19 crisis. Migration Letters, 18(3), 331?338. doi: 10.33182/ml.v18 i3.1469.

DOI: https://doi.org/10.33182/ml.v18i3.1469
View in Google Scholar

Psarska, M., Haskova, S., & Machova, V. (2019). Performance management in small and medium-sized manufacturing enterprises operating in automotive in the context of future changes and challenges in SR. Ad Alta: Journal of Interdisciplinary Research, 9(2), 281?287.
View in Google Scholar

Ptak-Chmielewska, A. (2019). Predicting micro-enterprise failures using data mining techniques. Journal of Risk and Financial Management, 12(1), 30. doi: 10.3390/jrfm12010030.

DOI: https://doi.org/10.3390/jrfm12010030
View in Google Scholar

Purvinis, O., Sukys, P., & Virbickaite, R. (2007). Adaptive network-based fuzzy inference system for enterprise bankruptcy prediction. In 2nd international conference on changes in social and business environment (pp. 198?202). Kaunas University Technology Press.
View in Google Scholar

Purvinis, O., Virbickaite, R., & Sukys, P. (2008). Interpretable nonlinear model for enterprise bankruptcy prediction. Nonlinear Analysis: Modelling and Con-trol, 13(1), 61?70. doi: 10.15388/NA.2008.13.1.14589.

DOI: https://doi.org/10.15388/NA.2008.13.1.14589
View in Google Scholar

Rahman, M., Li Sa, Ch., & Masud, A. K. (2021). Predicting firms´ financial dis-tress: an empirical analysis using the F-score model. Journal of Risk and Financial Management, 14(5), 199. doi: 10.3390/jrfm14050199.

DOI: https://doi.org/10.3390/jrfm14050199
View in Google Scholar

Sahoo, M., & Pradhan, J. (2021). Adaptation and acculturation: resettling dis-placed tribal communities from wildlife sanctuaries in India. Migration Let-ters, 18(3), 237?259. doi: 10.33182/ml.v18i3.877.

DOI: https://doi.org/10.33182/ml.v18i3.877
View in Google Scholar

Salehi, M., & Davoudi Pour, M. (2016). Bankruptcy prediction of listed compa-nies on the Tehran Stock Exchange. International Journal of Law and Man-agement, 58(5), 545?561. doi: 10.1108/IJLMA-05-2015-0023.

DOI: https://doi.org/10.1108/IJLMA-05-2015-0023
View in Google Scholar

Salehi, M., & Mousavi Shiri, M. (2016). Different bankruptcy prediction patterns in an emerging economy: Iranian evidence. International Journal of Law and Management, 58(3), 258?280. doi: 10.1108/IJLMA-05-2015-0022.

DOI: https://doi.org/10.1108/IJLMA-05-2015-0022
View in Google Scholar

SARIO (2021a). Machinery & equipment industry in Slovakia. Bratislava: Slovak Investment and Trade Development Agency.
View in Google Scholar

SARIO (2021b). Automotive sector in Slovakia. Bratislava: Slovak Investment and Trade Development Agency.
View in Google Scholar

Shetty, S. H., & Vincent, T. N. (2021). The role of board independence and own-ership structure in improving the efficacy of corporate financial distress pre-diction model: evidence from India. Journal of Risk and Financial Manage-ment, 14(7), 333. doi: 10.3390/jrfm14070333.

DOI: https://doi.org/10.3390/jrfm14070333
View in Google Scholar

Shirata, C. Y. (1998). Financial ratios as predictors of bankruptcy in Japan: an empirical research. In Proceedings of the second Asian Pacific interdiscipli-nary research in accounting conference. Retrieved from https://www.shirata.net/ eng/APIRA98.html.
View in Google Scholar

Slavicek, O., & Kubenka, M. (2016). Bankruptcy prediction models based on the logistic regression for companies in the Czech Republic. In Proceedings of the 8th international scientific conference managing and modelling of financial risks (pp. 924?931). Ostrava: VŠB-TU of Ostrava.
View in Google Scholar

Smith, R. F., & Winakor, A. H. (1935). Changes in the financial structure of un-successful industrial corporations. Urbana, IL, USA: University of Illinois.
View in Google Scholar

Sousa, A., Braga, A., & Cunha, J. (2022). Impact of macroeconomic indicators on bankruptcy prediction models: case of the Portuguese construction sector. Quantitative Finance and Economics, 6(3), 405?432. doi: 10.3934/QFE.202 2018.

DOI: https://doi.org/10.3934/QFE.2022018
View in Google Scholar

Stefancik, R., Nemethova, I., & Seresova, T. (2021). Securitisation of migration in the language of Slovak far-right populism. Migration Letters, 18(6), 731. doi: 10.33182/ml.v18i6.1387.

DOI: https://doi.org/10.33182/ml.v18i6.1387
View in Google Scholar

Stefko, R., Horvathova, J., & Mokrisova, M. (2020). Bankruptcy prediction with the use of data envelopment analysis: an empirical study of Slovak businesses. Journal of Risk and Financial Management, 13(9), 212. doi: 10.3390/jrfm13 090212.

DOI: https://doi.org/10.3390/jrfm13090212
View in Google Scholar

Stefko, R., Horvathova, J., & Mokrisova, M. (2021). The application of graphic methods and the DEA in predicting the risk of bankruptcy. Journal of Risk and Financial Management, 14(5), 220. doi: 10.3390/jrfm14050220.

DOI: https://doi.org/10.3390/jrfm14050220
View in Google Scholar

Stehel, V., Horak, J., & Kruclicky, T. (2021). Business performance assessment of small and medium-sized enterprises: evidence from the Czech Repub-lic. Problems and Perspectives in Management, 19(3), 430?439. doi: 10.21511/ ppm.19(3).2021.35.

DOI: https://doi.org/10.21511/ppm.19(3).2021.35
View in Google Scholar

Svabova, L., Michalkova, L., Durica, M., & Nica, E. (2020). Business failure prediction for Slovak small and medium-sized companies. Sustainability, 12, 4572. doi: 10.3390/su12114572.

DOI: https://doi.org/10.3390/su12114572
View in Google Scholar

Takata, Y., Hosaka, T., & Ohnuma, H. (2015). Financial ratios extraction using adaboost for delisting prediction. Proceedings of the Seventh International Conference on Information, 158?161.
View in Google Scholar

Tam, K. (1991). Neural network models and the prediction of bank bankruptcy. Omega, 19(5), 429?445. doi: 10.1016/0305-0483(91)90060-7.

DOI: https://doi.org/10.1016/0305-0483(91)90060-7
View in Google Scholar

Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394?419. doi: 10.101 6/j.irfa.2013.02.013.

DOI: https://doi.org/10.1016/j.irfa.2013.02.013
View in Google Scholar

Tsai, Ch. F. (2009). Feature selection in bankruptcy prediction. Knowledge-Based Systems, 22(2), 120?127. doi: 10.1016/j.knosys.2008.08.002.

DOI: https://doi.org/10.1016/j.knosys.2008.08.002
View in Google Scholar

Tsai, Ch. F., & Wu, J. W. (2008). Using neural network ensembles for bankruptcy prediction and credit scoring. Expert Systems with Applications, 34(4), 2639?2649. doi: 10.1016/j.eswa.2007.05.019.

DOI: https://doi.org/10.1016/j.eswa.2007.05.019
View in Google Scholar

Tsakonas, A., Dounias, G., Doumpos, M., & Zopounidis, C. (2006). Bankruptcy prediction with neural logic networks by means of grammar-guided genetic programming. Expert Systems with Applications, 30(3), 449?461. doi: 10.1016/ j.eswa.2005.10.009.

DOI: https://doi.org/10.1016/j.eswa.2005.10.009
View in Google Scholar

Tseng, F. M., & Lin, L. (2005). A quadratic interval logit model for forecasting bankruptcy. Omega, 33(1), 85?91. doi: 10.1016/j.omega.2004.04.002.

DOI: https://doi.org/10.1016/j.omega.2004.04.002
View in Google Scholar

Tumpach, M., Surovicova, A., Juhaszova, Z., Marci, A., & Kubascikova, Z. (2020). Prediction of the bankruptcy of Slovak companies using neural net-works with SMOTE. Journal of Economics, 68(10), 1021?1039. doi: 10.31577/ ekoncas.2020.10.03.

DOI: https://doi.org/10.31577/ekoncas.2020.10.03
View in Google Scholar

Valaskova, K., Durana, P., Adamko, P., & Jaros, J. (2020). Financial compass for Slovak enterprises: modeling economic stability of agricultural entities. Jour-nal of Risk and Financial Management, 13(5), 92. doi: 10.3390/jrfm13050092.

DOI: https://doi.org/10.3390/jrfm13050092
View in Google Scholar

Valecky, J., & Slivkova, E. (2012). Microeconomic scoring model of Czech firms? bankruptcy. Ekonomicka Revue. Central European Review of Economic Issues, 15, 15?26. doi: 10.7327/cerei.2012.06.02.

DOI: https://doi.org/10.7327/cerei.2012.03.02
View in Google Scholar

Vochozka, M., Vrbka, J., & Suler, P. (2020). Bankruptcy or success? The effec-tive prediction of a company?s financial development using LSTM. Sustaina-bility, 12(18), 7529. doi: 10.3390/su12187529.

DOI: https://doi.org/10.3390/su12187529
View in Google Scholar

Wang, H., & Liu, X. (2021). Undersampling bankruptcy prediction: Taiwan bank-ruptcy data. Plos One, 16(7), e0254030. doi: 10.1371/journal.pone.0254030.

DOI: https://doi.org/10.1371/journal.pone.0254030
View in Google Scholar

Wang, L. (2019). Financial distress prediction for listed enterprises using fuzzy C-means. Littera Scripta, 12(1), 1?9.
View in Google Scholar

Wang, R., & Zha, B. (2019). A research on the optimal design of BP neural net-work based on improved GEP. International Journal of Pattern Recognition and Artificial Intelligence, 33(3), 1959007. doi: 10.1142/S0218001419590079.

DOI: https://doi.org/10.1142/S0218001419590079
View in Google Scholar

Wrzosek, M., & Ziemba, A. (2009). Construction of a rating based on a bankruptcy prediction model. Credit Research Center, The University of Edinburgh, 1?19.
View in Google Scholar

Youn, H., & Gu, Z. (2010). Predict US restaurant firm failures: the artificial neural network model versus logistic regression model. Tourism and Hospitality Research, 10(3), 171?187. doi: 2350/10.1057/thr.2010.2.

DOI: https://doi.org/10.1057/thr.2010.2
View in Google Scholar

Yousaf, M., & Bris, P. (2021). Assessment of bankruptcy risks in Czech compa-nies using regression analysis. Problems and Perspectives in Management, 19(3), 46?55. doi: 10.21511/ppm.19(3).2021.05.

DOI: https://doi.org/10.21511/ppm.19(3).2021.05
View in Google Scholar

Downloads

Published

2022-12-30

How to Cite

Gavurova, B., Jencova , S., Bacik , R., Miskufova, M., & Letkovsky , S. (2022). Artificial intelligence in predicting the bankruptcy of non-financial corporations. Oeconomia Copernicana, 13(4), 1215–1251. https://doi.org/10.24136/oc.2022.035

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.