Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries

Authors

DOI:

https://doi.org/10.24136/oc.2023.007

Keywords:

bankruptcy, prediction model, multiple discriminant analysis, Visegrad group countries

Abstract

Research background: Effective monitoring of financial health is essential in the financial management of enterprises. Early studies to predict corporate bankruptcy were published at the beginning of the last century. The prediction models were developed with a significant delay even among the Visegrad group countries.

Purpose of the article: The primary aim of this study is to create a model for predicting bankruptcy based on the financial information of 20,693 enterprises of all sectors that operated in the Visegrad group countries during the post-pandemic period (2020?2021) and identify significant predictors of bankruptcy. To reduce potential losses to shareholders, investors, and business partners brought on by the financial distress of enterprises, it is possible to use multiple discriminant analysis to build individual prediction models for each Visegrad group country and a complex model for the entire Visegrad group.

Methods: A bankruptcy prediction model is developed using multiple discriminant analysis. Based on this model, prosperity is assessed using selected corporate financial indicators, which are assigned weights such that the difference between the average value calculated in the group of prosperous and non-prosperous enterprises is as large as possible.

Findings & value added: The created models based on 6?14 financial indicators were developed using different predictor combinations and coefficients. For all Visegrad group countries, the best variable with the best discriminating power was the total indebtedness ratio, which was included in each developed model. These findings can be used also in other Central European countries where the economic development is similar to the analyzed countries. However, sufficient discriminant ability is required for the model to be used in practice, especially in the post-pandemic period, when the financial health and stability of enterprises is threatened by macroeconomic development and the performance and prediction ability of current bankruptcy prediction models may have decreased. Based on the results, the developed models have an overall discriminant ability greater than 88%, which may be relevant for academicians to conduct further empirical studies in this field.

Downloads

Download data is not yet available.

References

Alaminos, D., del Castillo, A., & Fernandez, M.A. (2016). A global model for bank-ruptcy prediction. Plos One, 11(11), e0166693. doi: 10.1371/journal.pone.0166693.

DOI: https://doi.org/10.1371/journal.pone.0166693
View in Google Scholar

Al-Kassar, T.A., & Soileau, J. S. (2014). Financial performance evaluation and bank-ruptcy prediction (failure). Arab Economic and Business Journal, 9(2), 147?155. doi: 10.1016/j.aebj.2014.05.010.

DOI: https://doi.org/10.1016/j.aebj.2014.05.010
View in Google Scholar

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. Journal of Finance, 23(4), 589?609. doi: 10.2307/2978933.

DOI: https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
View in Google Scholar

Altman, E. I., & Narayanan, P. (1997). An international survey of business failure classification models. Financial Markets, Institutions & Instruments, 6(2), 1?57. doi: 10.1111/1468-0416.00010.

DOI: https://doi.org/10.1111/1468-0416.00010
View in Google Scholar

Altman, E., I. (1983). Corporate financial distress: A complete guide to predicting, avoid-ing, and dealing with bankruptcy. Wiley.
View in Google Scholar

Amendola, A., Giordano, F., Parrella, M. L., & Restaino, M. (2017). Variable selec-tion in high?dimensional regression: a nonparametric procedure for business failure prediction. Applied Stochastic Models in Business and Industry, 33(4), 355?368. doi: 10.1002/asmb.2240.
View in Google Scholar

Appenzeller, D., & Szarzec, K. (2004). Forecasting the bankruptcy risk of Polish public companies. Rynek Terminowy, 1, 120?28.
View in Google Scholar

Balina, R., Idasz-Balina, M., & Achsani, N. A. (2021). Predicting insolvency of the construction companies in the creditworthiness assessment process?empirical evidence from Poland. Journal of Risk and Financial Management, 14(10). doi: 10.33 90/jrfm14100453.

DOI: https://doi.org/10.3390/jrfm14100453
View in Google Scholar

Bateni, L., & Asghari, F. (2020). Bankruptcy prediction using logit and genetic algorithm models: A comparative analysis. Computational Economics, 55(1), 335?348. doi: 10.1007/s10614-016-9590-3.

DOI: https://doi.org/10.1007/s10614-016-9590-3
View in Google Scholar

Bărbu?ă-Mi?u N., & Madaleno, M. (2020). Assessment of bankruptcy risk of large companies: European countries evolution analysis. Journal of Risk and Financial Management, 13(3), 58. doi: 10.3390/jrfm13030058.

DOI: https://doi.org/10.3390/jrfm13030058
View in Google Scholar

Bauer, J., & Agarwal, V. (2014). Are hazard models superior to traditional bank-ruptcy prediction approaches? A comprehensive test. Journal of Banking & Finance, 40, 432?442. doi: 10.1016/j.jbankfin.2013.12.013.

DOI: https://doi.org/10.1016/j.jbankfin.2013.12.013
View in Google Scholar

Bauer, P., & Endresz, M. (2016). Modelling bankruptcy using Hungarian firm-level data. Retrieved from https://www.mnb.hu/letoltes/mnb-op-122-final.pdf.
View in Google Scholar

Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71?111. doi: 10.2307/2490171.

DOI: https://doi.org/10.2307/2490171
View in Google Scholar

Becchetti, L., & Sierra, J. (2003). Bankruptcy risk and productive efficiency in manu-facturing firms. Journal of Banking & Finance, 27(11), 2099?2120. doi: 10.1016/ S0378-4266(02)00319-9.

DOI: https://doi.org/10.1016/S0378-4266(02)00319-9
View in Google Scholar

Bellovary, J. L., Giacomino, D. E., & Akers, M. D. (2007). A review of bankruptcy prediction studies: 1930 to present. Journal of Financial Education, 33, 1?42.
View in Google Scholar

Bilderbeek, J. (1979). Empirical-study of the predictive ability of financial ratios in the Netherlands. Zeitschrift fur Betriebswirtschaft, 49(5), 388?407.
View in Google Scholar

Black, F., & Scholes, M. (2019). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637?654. doi: 10.1086/260062.

DOI: https://doi.org/10.1086/260062
View in Google Scholar

Blum, M. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1), 1?25. doi: 10.2307/2490525.

DOI: https://doi.org/10.2307/2490525
View in Google Scholar

Boda, M., & Uradnicek, V. (2019). Predicting financial distress of Slovak agricul-tural enterprises. Ekonomicky casopis, 67(4), 426?452.
View in Google Scholar

Boratynska, K., & Grzegorzewska, E. (2018). Bankruptcy prediction in the agri-business sector: Lessons from quantitative and qualitative approaches. Journal of Business Research, 89, 175?181. doi: 10.1016/j.jbusres.2018.01.028.

DOI: https://doi.org/10.1016/j.jbusres.2018.01.028
View in Google Scholar

Bragoli, D., Ferretti, C., Ganugi, P., Marseguerra, G., Mezzogori, D., & Zammori, F. (2022). Machine-learning models for bankruptcy prediction: Do industrial variables matter? Spatial Economic Analysis, 17(2), 156?177. doi: 10.1080/17421772. 2021.1977377.

DOI: https://doi.org/10.1080/17421772.2021.1977377
View in Google Scholar

Brozyna, J., Mentel, G., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistics sector in Poland and Slovakia. Transformations in Business & Economics, 15(1), 93?114.
View in Google Scholar

Cegarra-Navarro, J. G., Bratianu, C., Martinez-Martinez, A., Vatamanescu, E. M., & Dabija, D. C. (2023). Creating civic and public engagement by a proper balance between emotional, rational, and spiritual knowledge. Journal of Knowledge Management. Advance online publication. doi: 10.1108/JKM-07-2022-0532.

DOI: https://doi.org/10.1108/JKM-07-2022-0532
View in Google Scholar

Chen, H. J., Huang, S. Y., & Lin, C. S. (2009). Alternative diagnosis of corporate bankruptcy: A neuro fuzzy approach. Expert Systems with Applications, 36(4), 7710?7720. doi: 10.1016/j.eswa.2008.09.023.

DOI: https://doi.org/10.1016/j.eswa.2008.09.023
View in Google Scholar

Chijoriga, M. M. (2011). Application of multiple discriminant analysis (MDA) as a credit scoring and risk assessment model. International Journal of Emerging Markets, 6(2), 132?147. doi: 10.1108/17468801111119498.

DOI: https://doi.org/10.1108/17468801111119498
View in Google Scholar

Chrastinova, Z. (1998). Methods of economic creditworthiness evaluation and prediction of financial situation of agricultural holdings. Bratislava: VUEPP.
View in Google Scholar

Daniel, T. (1968). Discriminant analysis for the prediction of business failures. University of Alabama.
View in Google Scholar

Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), 167?179. doi: 10.2307/2490225.

DOI: https://doi.org/10.2307/2490225
View in Google Scholar

Delina, R., & Packova, M. (2013). Prediction bankruptcy models validation in Slo-vak business environment. E & M Ekonomie a management, 16(3), 101?113.
View in Google Scholar

Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business fail-ures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487?513. doi: 10.1016/0377-2217(9 5)00070-4.

DOI: https://doi.org/10.1016/0377-2217(95)00070-4
View in Google Scholar

Dimitrova, M., Treapat, L. M., & Tulaykova, I. (2021). Value at Risk as a tool for economic-managerial decision-making in the process of trading in the finan-cial market. Ekonomicko-manazerske spektrum, 15(2), 13?26. doi: 10.26552/ems.2021.2. 13-26.

DOI: https://doi.org/10.26552/ems.2021.2.13-26
View in Google Scholar

Dorgai, K., Fenyves, V., & Suto, D. (2016). Analysis of commercial enterprises' solvency by means of different bankruptcy models. Gradus, 3(1), 341?349.
View in Google Scholar

Durana, P., Michalkova, L., Privara, A., Marousek, J., & Tumpach, M. (2021). Does the life cycle affect earnings management and bankruptcy? Oeconomia Copernicana, 12(2), 425?461. doi: 10.24136/oc.2021.015.

DOI: https://doi.org/10.24136/oc.2021.015
View in Google Scholar

Durana, P., Valaskova, K., Blazek, R., & Palo, J. (2022). Metamorphoses of earnings in the transport sector of the V4 region. Mathematics, 10(8), 1204. doi: 10.3390/ math10081204.

DOI: https://doi.org/10.3390/math10081204
View in Google Scholar

Dvoracek, J., & Sousedikova, R. (2006). Applying discriminate analysis to predict prospects of corporate activities. Acta Montanistica Slovaca, 4, 283?286.
View in Google Scholar

Dvoracek, J., Sousedikova, R., & Domaracka, L. (2008). Industrial enterprises bank-ruptcy forecasting. Metalurgija, 47(1), 33?36.
View in Google Scholar

Dvoracek, J., Sousedikova, R., Repka, M., Domaracka, L., Bartak, P., & Bartosikova, M. (2012). Choosing a method for predicting economic performance of compa-nies. Metalurgija, 51(4), 525?528.
View in Google Scholar

Dwyer, M. (1992). A comparison of statistical techniques and artificial neural network models in corporate bankruptcy prediction. University of Wisconsin.
View in Google Scholar

Earl, M. J., & Marais, D. (1982). Predicting corporate failure in the UK using dis-criminant analysis. Accounting and Business Research.
View in Google Scholar

Erdogan, B. E. (2013). Prediction of bankruptcy using support vector machines: An application to bank bankruptcy. Journal of Statistical Computation and Simulation, 83(8), 1543?1555. doi: 10.1080/00949655.2012.666550.

DOI: https://doi.org/10.1080/00949655.2012.666550
View in Google Scholar

Fitzpatrik, P. J. (1932). A comparison of ratios of successful industrial enterprises with those of failed firm. Certified Public Accountant, 6, 727?731.
View in Google Scholar

Gavurova, B., Janke, F., Packova, M., & Pridavok, M. (2017). Analysis of impact of using the trend variables on bankruptcy prediction models performance. Ekonomicky casopis, 65(4), 370?383.
View in Google Scholar

Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting financial distress of slovak enterprises: Comparison of selected traditional and learning algorithms methods. Sustainability, 12(10), 3954. doi: 10.3390/su121039 54.

DOI: https://doi.org/10.3390/su12103954
View in Google Scholar

Grice, J. S., & Dugan, M. T. (2001). The limitations of bankruptcy prediction mod-els: Some cautions for the researcher. Review of Quantitative Finance and Account-ing, 17(2), 151?166. doi: 10.1023/A:1017973604789.

DOI: https://doi.org/10.1023/A:1017973604789
View in Google Scholar

Grice, J. S., & Ingram, R. W. (2001). Tests of the generalizability of Altman?s bank-ruptcy prediction model. Journal of Business Research, 54, 53?61. doi: 10.1016/S0 148-2963(00)00126-0.

DOI: https://doi.org/10.1016/S0148-2963(00)00126-0
View in Google Scholar

Guan, Q. (1993). Development of optimal network structures for back-propagation-trained neural networks. University of Nebraska.
View in Google Scholar

Gulka, M. (2016). The prediction model of financial distress of enterprises operat-ing in conditions of SR. Biatec, 24(6), 5?10.
View in Google Scholar

Gurcik, L. (2002). G-index-the financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48, 373?378. doi: 10.17221/5338-AGRICEC ON.

DOI: https://doi.org/10.17221/5338-AGRICECON
View in Google Scholar

Hajdu, O., & Virag, M. (2001). A Hungarian model for predicting financial bank-ruptcy. Society and Economy in Central and Eastern Europe, 23(1/2), 28?46. doi: 10.2307/41468499.
View in Google Scholar

Hamrol, M., Czajka, B., & Piechocki, M. (2004). Enterprise bankruptcy?discriminant analysis model. Przegląd Organizacji, 6, 35?39.

DOI: https://doi.org/10.33141/po.2004.06.09
View in Google Scholar

Hertina, D., & Dari, F. W. (2022). Comparative analysis of financial distress mod-els in predicting bankruptcy during Covid-19 pandemic. Jurnal Penelitian Ilmu Ekonomi, 12(4), 272?282. doi: 10.30741/wiga.v12i4.900.

DOI: https://doi.org/10.30741/wiga.v12i4.900
View in Google Scholar

Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies, 9(1), 5?34. doi: 10.1023/B:RAST.0000013627.90884.b7.

DOI: https://doi.org/10.1023/B:RAST.0000013627.90884.b7
View in Google Scholar

Hiong, H. K., Jalil, M. F., & Seng, A. T. H. (2021). Estimation and prediction of financial distress: Non-financial firms in Bursa Malaysia. Journal of Asian Fi-nance, Economics and Business, 8(8), 1?12. doi: 10.13106/jafeb.2021.vol8.no8.0001.
View in Google Scholar

Horvathova, J., & Mokrisova, M. (2014). Determination of business performance applying modern methods of business performance evaluation. Economics, Management, Innovation, 6(3), 46?60.
View in Google Scholar

Horvathova, J., & Mokrisova, M. (2018). Risk of bankruptcy, its determinants and models. Risks, 6(4), 117. doi: 10.3390/risks6040117.

DOI: https://doi.org/10.3390/risks6040117
View in Google Scholar

Horvathova, J., Mokrisova, M., & Petruska, I. (2021). Selected methods of predict-ing financial health of companies: Neural networks versus discriminant analy-sis. Information, 12(12). doi: 10.3390/info12120505.

DOI: https://doi.org/10.3390/info12120505
View in Google Scholar

Hurtosova, J. (2009). Development of rating model as a tool to assess the enterprise credi-bility. University of Economics in Bratislava.
View in Google Scholar

Inam, F., Inam, A., Mian, M. A., Sheikh, A. A., & Awan, H. M. (2019). Forecasting bankruptcy for organizational sustainability in Pakistan using artificial neural networks, logit regression, and discriminant analysis. Journal of Economic and Administrative Sciences, 35(3), 183?201. doi: 10,1108/JEAS-05-2018-0063.

DOI: https://doi.org/10.1108/JEAS-05-2018-0063
View in Google Scholar

Jagiello, R. (2013). Discriminant and logistic analysis in the process of assessing the cre-ditworthiness of enterprises. Materialy i Studia, Zeszyt, 286. Warszawa: NBP.
View in Google Scholar

Jakubik, P., & Teply, P. (2011). The JT index as an indicator of financial stability of corporate sector. Prague Economic Papers, 20(2), 157?176. doi: 10.18267/j.pep.394.

DOI: https://doi.org/10.18267/j.pep.394
View in Google Scholar

Jandaghi, G., Saranj, A., Rajaei, R., Ghasemi, A., & Tehrani, R. (2021). Identification of the most critical factors in bankruptcy prediction and credit classification of companies. Iranian Journal of Management Studies, 14(4), 817?834. doi: 10.22059/IJ MS.2021.285398.673712.
View in Google Scholar

Jang, Y., Jeong, I., & Cho, Y. K. (2021). Identifying impact of variables in deep learning models on bankruptcy prediction of construction contractors. Engi-neering, Construction and Architectural Management, 28(10), 3282?3298. doi: 10.1108/ECA M-06-2020-0386.

DOI: https://doi.org/10.1108/ECAM-06-2020-0386
View in Google Scholar

Jones, S., & Hensher, D. A. (2004). Predicting firm financial distress: A mixed logit model. Accounting Review, 79(4), 1011?1038. doi: 10.2308/accr.2004.79.4.1011.

DOI: https://doi.org/10.2308/accr.2004.79.4.1011
View in Google Scholar

Jones, S., Johnstone, D., & Wilson, R. (2015). An empirical evaluation of the per-formance of binary classifiers in the prediction of credit ratings changes. Jour-nal of Banking & Finance, 56, 72?85. doi: 10.1016/j.jbankfin.2015.02.006.

DOI: https://doi.org/10.1016/j.jbankfin.2015.02.006
View in Google Scholar

Joy, O. M., & Tollefson, J. O. (1975). On the financial applications of discriminant analysis. Journal of Financial and Quantitative Analysis, 10(5), 723?739. doi: 10.2307/2330267.

DOI: https://doi.org/10.2307/2330267
View in Google Scholar

Kaczmarek, J., Alonso, S. L. N., Sokolowski, A., Fijorek, K., & Denkowska, S. (2021). Financial threat profiles of industrial enterprises in Poland. Oeconomia Copernicana, 12(2), 463?498. doi: 10.24136/oc.2021.016.

DOI: https://doi.org/10.24136/oc.2021.016
View in Google Scholar

Kalouda, F., & Vanicek, R. (2013). Alternative bankruptcy models?First results. In European financial systems. Telc: MUNI press.
View in Google Scholar

Karas, M., & Reznakova, M. (2018). Building a bankruptcy prediction model: Could information about past development increase model accuracy? Polish Journal of Management Studies, 17(1), 116?130. doi: 10.17512/pjms.2018.17.1.10.

DOI: https://doi.org/10.17512/pjms.2018.17.1.10
View in Google Scholar

Karas, M., & Reznakova, M. (2020). Cash flows indicators in the prediction of fi-nancial distress. Engineering Economics, 31(5), 525?535. doi: 10.5755/j01.ee.31.5.25202.

DOI: https://doi.org/10.5755/j01.ee.31.5.25202
View in Google Scholar

Karas, M., & Režňáková, M. (2021). The role of financial constraint factors in pre-dicting SME default. Equilibrium. Quarterly Journal of Economics and Economic Pol-icy, 16(4), 859?883. doi: 10.24136/eq.2021.032.

DOI: https://doi.org/10.24136/eq.2021.032
View in Google Scholar

Karbownik, L. (2017). Methods for assessing the financial risk of enterprises in the TSI sector in Poland. Lodz: Wydawnictwo Uniwersytetu Lodzkiego.
View in Google Scholar

Kim, H. S., & Sohn, S. Y. (2010). Support vector machines for default prediction of SMEs based on technology credit. European Journal of Operational Research, 201(3), 838?846. doi: 10.1016/j.ejor.2009.03.036.

DOI: https://doi.org/10.1016/j.ejor.2009.03.036
View in Google Scholar

Kim, K. S., Choi, H. H., Moon, C. S., & Mun, C. W. (2011). Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classifica-tion of electromyogram signals based on the wrist-motion directions. Current Applied Physics, 11(3), 740?745.

DOI: https://doi.org/10.1016/j.cap.2010.11.051
View in Google Scholar

Kim-Soon, N., Mohammed, A. A. E., Ahmad, A. R., & Tat, H. H. (2013). Applicabil-ity of Altman's revised model in predicting financial distress: A case of PN17 companies quoted in Malaysian stock exchange. In Entrepreneurship vision 2020: innovation, development sustainability, and economic growth (pp. 350-357). IBIMA.
View in Google Scholar

Kitowski, J., Kowal-Pawul, A., & Lichota, W. (2022). Identifying symptoms of bankruptcy risk based on bankruptcy prediction models?A case study of Po-land. Sustainability, 14(3), 1416. doi: 10.3390/su14031416.

DOI: https://doi.org/10.3390/su14031416
View in Google Scholar

Kliestik, T., Misankova, M., Valaskova, K., & Svabova, L. (2018a). Bankruptcy pre-vention: New effort to reflect on legal and social changes. Science and Engineer-ing Ethics, 24(2), 791?803. doi: 10.1007/s11948-017-9912-4.

DOI: https://doi.org/10.1007/s11948-017-9912-4
View in Google Scholar

Kliestik, T., Valaskova, K., Lazaroiu, G., Kovacova, M., & Vrbka, J. (2020). Remain-ing financially healthy and competitive: The role of financial predictors. Jour-nal of Competitiveness, 12(1), 74?92. doi: 10.7441/joc.2020.01.05.

DOI: https://doi.org/10.7441/joc.2020.01.05
View in Google Scholar

Kliestik, T., Vrbka, J., & Rowland, Z. (2018b). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 569?593. doi: 10.24136/eq.2018 .028.

DOI: https://doi.org/10.24136/eq.2018.028
View in Google Scholar

Kliestikova, J., Misankova, M., & Kliestik, T. (2017). Bankruptcy in Slovakia: Inter-national comparison of the creditor´s position. Oeconomia Copernicana, 8(2), 221?237. doi: 10.24136/oc.v8i2.14.

DOI: https://doi.org/10.24136/oc.v8i2.14
View in Google Scholar

Korab, V. (2001). One approach to small business bankruptcy prediction: The case of the Czech Republic. In VII SIGEF congress new logistics for the new economy. Naples: SIGEFF International Association for FUZZY SET.
View in Google Scholar

Korol, T. (2018). The implementation of fuzzy logic in forecasting financial ratios. Contemporary Economics, 12(2), 165?188. doi: 10.5709/ce.1897-9254.270.
View in Google Scholar

Korol, T. (2019). Dynamic bankruptcy prediction models for European enterprises. Journal of Risk and Financial Management, 12(4), 185. doi: 10.3390/jrfm12040185.

DOI: https://doi.org/10.3390/jrfm12040185
View in Google Scholar

Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium. Quarterly Journal of Economics and Economic Policy, 12(4), 775?791. doi: 10.24136/eq.v12i4.40.

DOI: https://doi.org/10.24136/eq.v12i4.40
View in Google Scholar

Kovacova, M., Kliestik, T., Valaskova, K., Durana, P., & Juhaszova, Z. (2019a). Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernicana, 10(4), 743?772. doi: 10.24136/oc. 2019.034.

DOI: https://doi.org/10.24136/oc.2019.034
View in Google Scholar

Kovacova, M., Krajcik, V., Michalkova, L., & Blazek, R. (2022). Valuing the interest tax shield in the Central European economies: Panel data approach. Journal of Competitiveness, 14(2), 41?59. doi: 10.7441/joc.2022.02.03.

DOI: https://doi.org/10.7441/joc.2022.02.03
View in Google Scholar

Kovacova, M., Valaskova, K., Durana, P., & Kliestikova, J. (2019b). Innovation management of the bankruptcy: Case study of Visegrad group countries. Mar-keting and Management of Innovations, (4), 241?251. doi: 10.21272/mmi.2019.4-19.

DOI: https://doi.org/10.21272/mmi.2019.4-19
View in Google Scholar

Krajewski, J., Tokarski, A., & Tokarski, M. (2020). The analysis of the bankruptcy of enterprises exemplified by the Visegrad Group. Journal of Business Economics and Management, 21(2), 593?609. doi: 10.3846/jbem.2020.12232.

DOI: https://doi.org/10.3846/jbem.2020.12232
View in Google Scholar

Krulicky, T., & Horak, J. (2021). Business performance and financial health assess-ment through artificial intelligence. Ekonomicko-manazerske spektrum, 15(2), 38?51. doi: 10.26552/ems.2021.2.38-51.

DOI: https://doi.org/10.26552/ems.2021.2.38-51
View in Google Scholar

Kubenka, M. (2018). Improvement of prosperity prediction in Czech manufactur-ing industries. Engineering Economics, 29(5), 516?525. doi: 10.5755/j01.ee.29.5.18231.

DOI: https://doi.org/10.5755/j01.ee.29.5.18231
View in Google Scholar

Kubenka, M., Capek, J., & Sejkora, F. (2021). A new look at bankruptcy models. E & M Ekonomie a Management, 24(3), 167?185. doi: 10.15240/tul/001/2021-3-010.

DOI: https://doi.org/10.15240/tul/001/2021-3-010
View in Google Scholar

Kubickova, D., & Nulicek, V. (2016). Predictors of financial distress and bankrupt-cy model construction. International Journal of Management Science and Business Administration, 2(6), 34?41. doi: 10.18775/ijmsba.1849-5664-5419.2014.26.1003.

DOI: https://doi.org/10.18775/ijmsba.1849-5664-5419.2014.26.1003
View in Google Scholar

Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via sta-tistical and intelligent techniques?A review. European Journal of Operational Research, 180(1), 1?28. doi: 10.1016/j.ejor.2006.08.043.

DOI: https://doi.org/10.1016/j.ejor.2006.08.043
View in Google Scholar

Laitinen, E. K. (1991). Financial ratios and different failure processes. Journal of Business Finance & Accounting, 18(5), 649?673. doi: 10.1111/j.1468-5957.1991.tb00 231.x.

DOI: https://doi.org/10.1111/j.1468-5957.1991.tb00231.x
View in Google Scholar

Li, H., Chen, Q. X., Hong, L. Y., & Zhou, Q. (2019). Asset restructuring performance prediction for failure firms. Journal of Corporate Accounting & Finance, 30(4), 25?42. doi: 10.1002/jcaf.22409.

DOI: https://doi.org/10.1002/jcaf.22409
View in Google Scholar

Lifschutz, S., & Jacobi, A. (2010). Predicting bankruptcy: Evidence from Israel. International Journal of Business and Management, 5(4), 133?141. doi: 10.5539/ijbm. v5n4p133.

DOI: https://doi.org/10.5539/ijbm.v5n4p133
View in Google Scholar

Lukason, O., & Camacho.Minano, M. (2019). Bankruptcy risk, its financial deter-minants and reporting delays: Do managers have anything to hide? Risks, 7(3), 77. doi: 10.3390/risks7030077.

DOI: https://doi.org/10.3390/risks7030077
View in Google Scholar

Lussier, R. N., Corman, J., & Corman, J. (1996). A business success versus failure prediction model for entrepreneurs with 0-10 employees. Journal of Small Business Strategy, 7(1), 21?36.
View in Google Scholar

Machek, O., Smrcka, L., & Strouhal, J. (2015). How to predict potential default of cultural organizations. In 7th international scientific conference finance and perfor-mance of firms in science, education and practice. Zlin: Tomas Bata University in Zlin.
View in Google Scholar

Maczynska, E. (1994). Assessment of the condition of the enterprise. Simplified methods. Zycie Gospodarcze, 38, 42?45.

DOI: https://doi.org/10.1016/0034-3617(94)90390-5
View in Google Scholar

Malhotra, A. (2021). A hybrid econometric?machine learning approach for relative importance analysis: Prioritizing food policy. Eurasian Economic Review, 11(3), 549?581. doi: 10.1007/s40822-021-00170-9.

DOI: https://doi.org/10.1007/s40822-021-00170-9
View in Google Scholar

Marozzi, M., & Cozzucoli, P. C. (2016). Inter-industry financial ratio comparison with application to Japanese and Chinese firms. Electronic Journal of Applied Statistical Analysis, 9(1), 40?57. doi: 10.1285/i20705948v9n1p40.
View in Google Scholar

Meeampol, S., Lerskullawat, P., Wongsorntham, A., Srinammuang, P., Rodpetch, V., & Noonoi, R. (2014). Applying emerging market Z-score model to predict bankruptcy: A case study of listed companies in the stock exchange of Thailand (Set). Management, Knowledge and Learning, 1227?1237.
View in Google Scholar

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449?470. doi: 10.1111/j.1540-6261.1974.tb03058.x.

DOI: https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
View in Google Scholar

Mihalovic, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics & Sociology, 9(4), 101. doi: 10.14254/2071-789X.2016/9-4/6.

DOI: https://doi.org/10.14254/2071-789X.2016/9-4/6
View in Google Scholar

Min, J. H., & Lee, Y. C. (2005). Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Systems with Applications, 28(4), 603?614. doi: 10.1016/j.eswa.2004.12.008.

DOI: https://doi.org/10.1016/j.eswa.2004.12.008
View in Google Scholar

Narvekar, A., & Guha, D. (2021). Bankruptcy prediction using machine learning and an application to the case of the COVID-19 recession. Data Science in Fi-nance and Economics, 1(2), 180?195. doi: 10.3934/DSFE.2021010.

DOI: https://doi.org/10.3934/DSFE.2021010
View in Google Scholar

Neumaierova, I., & Neumaier, I. (1995). Strategy and prosperity of the Czech and Austrian companies. Politicka Ekonomie, 43(6), 798?810.
View in Google Scholar

Nicolescu, L., & Tudorache, F. G. (2016). The evolution of non-banking financial markets in Hungary: The case of mutual funds. Management Dynamics in the Knowledge Economy, 4(4), 591?621.
View in Google Scholar

Odom, M. D., & Sharda, R. (1990). A neural network model for bankruptcy predic-tion. In IJCNN international joint conference on neural networks. San Diego: IEEE Institute. doi: 10.1109/IJCNN.1990.137710.

DOI: https://doi.org/10.1109/IJCNN.1990.137710
View in Google Scholar

Ogachi, D., Ndege, R., Gaturu, P., & Zoltan, Z. (2020). Corporate bankruptcy pre-diction model, a special focus on listed companies in Kenya. Journal of Risks and Financial Management, 13(3), 47. doi: 10.3390/jrfm13030047.

DOI: https://doi.org/10.3390/jrfm13030047
View in Google Scholar

Ogbogo, S. (2019). Discriminant analysis: An analysis of its predictship function. Journal of Education and Practice, 10(5), 50?57. doi: 10.7176/JEP.

DOI: https://doi.org/10.7176/JEP
View in Google Scholar

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankrupt-cy. Journal of Accounting Research, 18(1), 109?131. doi: 10.2307/2490395.

DOI: https://doi.org/10.2307/2490395
View in Google Scholar

Oreski, S., & Oreski, G. (2018). Cost-sensitive learning from imbalanced datasets for retail credit risk assessment. TEM Journal-Technology Education Management Informatics, 7(1), 59?73. doi: 10.18421/TEM71-08.
View in Google Scholar

Papik, M., & Papikova, L. (2023). Impacts of crisis on SME bankruptcy prediction models? performance. Expert Systems with Applications, 214, 119072. doi: 10.1016/ j.eswa.2022.119072.

DOI: https://doi.org/10.1016/j.eswa.2022.119072
View in Google Scholar

Peres, C., & Antao, M. (2017). The use of multivariate discriminant analysis to predict corporate bankruptcy: A review. Aestimatio: The IEB International Journal of Finance, 14, 108?131. doi: 10.5605/IEB.14.6.
View in Google Scholar

Pervan, I., Pervan, M., & Kuvek, T. (2018). Firm failure prediction: Financial dis-tress model vs. traditional models. Croatian Operational Research Review, 9(2), 269?279. doi: 10.17535/crorr.2018.0021.

DOI: https://doi.org/10.17535/crorr.2018.0021
View in Google Scholar

Peto, D., & Rozsa, A. (2015). Financial future prospect investigation using bank-ruptcy forecasting models in Hungarian meat processing industry. Annals of the University of Oradea, Economic Science, 24(1), 801?809.
View in Google Scholar

Pisula, T., Mentel, G., & Brozyna, J. (2013). Predicting bankruptcy of companies from the logistics sector operating in the Podkarpacie region. Modern Management Review, 18(20), 113?133. doi: 10.7862/RZ.2013.MMR.33.

DOI: https://doi.org/10.7862/rz.2013.mmr.33
View in Google Scholar

Pisula, T., Mentel, G., & Brozyna, J. (2015). Non-statistical methods of analysing of bankruptcy risk. Folia Oeconomica Stetinensia, 15(1). doi: 10.1515/foli-2015-0029.

DOI: https://doi.org/10.1515/foli-2015-0029
View in Google Scholar

Pitrova, K. (2011). Possibilities of the Altman Zeta model application to Czech firms. E & M Ekonomie a management, 14(3), 66?76.
View in Google Scholar

Platt, H. D., Platt, M. B., & Pedersen, J. G. (1994). Bankruptcy discrimination with real variables. Journal of Business Finance & Accounting, 21(4), 491?510. doi: 10.11 11/j.1468-5957.1994.tb00332.x.

DOI: https://doi.org/10.1111/j.1468-5957.1994.tb00332.x
View in Google Scholar

Ptak-Chmielewska, A. (2021). Bankruptcy prediction of small- and medium-sized enterprises in Poland based on the LDA and SVM methods. Statistics in Transition New Series, 22(1), 179?195. doi: 10.21307/stattrans-2021-010.

DOI: https://doi.org/10.21307/stattrans-2021-010
View in Google Scholar

Reznakova, M., & Karas, M. (2015). The prediction capabilities of bankruptcy models in a different environment: An example of the Altman model under the conditions in the Visegrad group countries. Ekonomicky casopis, 63(6), 617?633.
View in Google Scholar

Romero, M., Carmona, P., & Pozuelo, J. (2021). The prediction of the business fail-ure of the Spanish cooperatives. Application of the Extreme Gradient Boosting Algorithm. CIRIEC-Espana Revista De Economia Publica Social Y Cooperativa, 101, 255?288. doi: 10.7203/CIRIEC-E.101.15572.

DOI: https://doi.org/10.7203/CIRIEC-E.101.15572
View in Google Scholar

Rozsa, A. (2014). Financial performance analysis and bankruptcy prediction in Hungarian dairy sector. Annals of the University of Oradea, Economic Sciences, 1(1), 938?947. doi: 10.1108/CR-12-2014-0041.

DOI: https://doi.org/10.1108/CR-12-2014-0041
View in Google Scholar

Rudolfova, L., & Skerlikova, T. (2014). Discrepancy between the default and finan-cial distress measured by bankruptcy models. Journal of Eastern European and Central Asian Research (JEECAR), 1(1), 12. doi: 10.15549/jeecar.v1i1.43.

DOI: https://doi.org/10.15549/jeecar.v1i1.43
View in Google Scholar

Rybarova, D., Majduchova, H., Stetka, P., & Luscikova, D. (2021). Reliability and accuracy of alternative default prediction models: Evidence from Slovakia. International Journal of Financial Studies, 9(4), 65. doi: 10.3390/ijfs9040065.

DOI: https://doi.org/10.3390/ijfs9040065
View in Google Scholar

Scott, J. (1981). The probability of bankruptcy: A comparison of empirical predic-tions and theoretical models. Journal of Banking & Finance, 5(3), 317?344.

DOI: https://doi.org/10.1016/0378-4266(81)90029-7
View in Google Scholar

Sharma, S. (1996). Applied multivariate techniques. New York: John Wiley and Sons Ltd.
View in Google Scholar

Shi, Y., & Li, X. (2019). An overview of bankruptcy prediction models for corpo-rate firms: A systematic literature review. Intangible Capital, 15(2), 114?127. doi: 10.39 26/ic.1354.

DOI: https://doi.org/10.3926/ic.1354
View in Google Scholar

Shin, K. S., & Lee, Y. J. (2002). A genetic algorithm application in bankruptcy pre-diction modeling. Expert Systems with Applications, 23(3), 321?328. doi: 10.1016/ S0957-4174(02)00051-9.

DOI: https://doi.org/10.1016/S0957-4174(02)00051-9
View in Google Scholar

Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. Journal of Business, 74(1), 101?124. doi: 10.1086/209665.

DOI: https://doi.org/10.1086/209665
View in Google Scholar

Sinkey Jr, J. F. (1975). A multivariate statistical analysis of the characteristics of problem banks. Journal of Finance, 30(1), 21?36. doi: 10.2307/2978429.

DOI: https://doi.org/10.1111/j.1540-6261.1975.tb03158.x
View in Google Scholar

Siudek, T. (2005). Forecasting the bankruptcy of cooperative banks using discrimi-nant analysis. Roczniki Naukowe Stowarzyszenia Ekonomistów Rolnictwa i Agrobiznesu 7, 86?91.
View in Google Scholar

Sousa, A., Braga, A., & Cunha, J. (2022). Impact of macroeconomic indicators on bankruptcy prediction models: Case of the Portuguese construction sector. Quantitative Finance and Economics, 6(3), 405?432. doi: 10.3934/QFE.2022018.

DOI: https://doi.org/10.3934/QFE.2022018
View in Google Scholar

Stefko, R., Horvathova, J., & Mokrisova, M. (2021). The application of graphic methods and the DEA in predicting the risk of bankruptcy. Journal of Risk and Financial Management, 14(5), 220. doi: 10.3390/jrfm14050220.

DOI: https://doi.org/10.3390/jrfm14050220
View in Google Scholar

Subran, L., Boata, A., Kuhanathan, A., & Lemerle, M. (2022). Energy crisis, interest rates shocks and untampered recession could trigger a wave of bankruptcies. Paris: Al-lianz Group Economic Research.
View in Google Scholar

Sulub, S. A. (2014). Testing the predictive power of Altman?s revised Z?model: The case of 10 multinational companies. Research Journal of Finance and Accounting, 5(21), 174?184.
View in Google Scholar

Svabova, L., & Durica, M. (2019). Being an outlier: A company non-prosperity sign?. Equilibrium. Quarterly Journal of Economics and Economic Policy, 14(2), 359?375. doi: 10.24136/eq.2019.017.

DOI: https://doi.org/10.24136/eq.2019.017
View in Google Scholar

Svabova, L., Michalkova, L., Durica, M., & Nica, E. (2020). Business failure predic-tion for Slovak small and medium-sized companies. Sustainability, 12(11), 4572. doi: 10.3390/su12114572.

DOI: https://doi.org/10.3390/su12114572
View in Google Scholar

Svabova, L., Durana, P., & Durica, M. (2022). Descriptive and inductive statistics. Zilina: EDIS - Publishing House of the University of Žilina.
View in Google Scholar

Szetela, B., Mentel, G., & Brozyna, J. (2016). In search of insolvency among Europe-an countries. Economic research-Ekonomska istraživanja, 29(1), 839?856. doi: 10.108 0/1331677X.2016.1237301.

DOI: https://doi.org/10.1080/1331677X.2016.1237301
View in Google Scholar

Szeverin, E. K., & Laszlo, K. (2014). The efficiency of bankruptcy forecast models in the Hungarian SME sector. Journal of Competitiveness, 6(2), 56?73. doi: 10.7441/ joc.2014.02.05.

DOI: https://doi.org/10.7441/joc.2014.02.05
View in Google Scholar

Taffler, R. J. (1983). The assessment of company solvency and performance using a statistical model. Accounting and Business Research, 13(52), 295?308. doi: 10.1080 /00014788.1983.9729767.

DOI: https://doi.org/10.1080/00014788.1983.9729767
View in Google Scholar

Taffler, R. J., & Tisshaw, H. (1977). Going, going, gone?four factors which predict. Accountancy, 88(1003), 50?54.
View in Google Scholar

Tian, S., & Yu, Y. (2017). Financial ratios and bankruptcy predictions: An interna-tional evidence. International Review of Economics & Finance, 51, 510?526. doi: 0.1016/j.iref.2017.07.025.

DOI: https://doi.org/10.1016/j.iref.2017.07.025
View in Google Scholar

Tian, S., Yu, Y., & Guo, H. (2015). Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52, 89?100. doi: 10.1016/j.jbankfin.2014.12.003.

DOI: https://doi.org/10.1016/j.jbankfin.2014.12.003
View in Google Scholar

Tomczak, S., & Radosinski, E. (2017). The effectiveness of discriminant models based on the example of the manufacturing sector. Operations Research and Decisions, 27(3), 81?97. doi: 10.5277/ord170306.
View in Google Scholar

Toth, R., Kasa, R., & Lentner, C. (2022). The impact of financial culture on the oper-ation of Hungarian SMEs before and during COVID-19. Risks, 10(7), 135. doi: 10.3390/risks10070135.

DOI: https://doi.org/10.3390/risks10070135
View in Google Scholar

Valaskova, K., Androniceanu, A. M., Zvarikova, K., & Olah, J. (2021). Bonds be-tween earnings management and corporate financial stability in the context of the competitive ability of enterprises. Journal of Competitiveness, 13(4), 167?184. doi: 10.7441/joc.2021.04.10.

DOI: https://doi.org/10.7441/joc.2021.04.10
View in Google Scholar

Valaskova, K., Durana, P., Adamko, P., & Jaros, J. (2020). Financial compass for Slovak enterprises: Modeling economic stability of agricultural entities. Jour-nal of Risk and Financial Management, 13(5), 92. doi: 10.3390/jrfm13050092.

DOI: https://doi.org/10.3390/jrfm13050092
View in Google Scholar

Valaskova, K., Kliestik, T., Svabova, L., & Adamko, P. (2018). Financial risk meas-urement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability, 10(7), 2144. doi: 10.3390/su10072144.

DOI: https://doi.org/10.3390/su10072144
View in Google Scholar

Valaskova, K., Nagy, M., Zabojnik, S., & Lazaroiu, G. (2022). Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in Slovak exports. Mathematics, 10(14), 2452. doi: 10.3390 /math10142452.

DOI: https://doi.org/10.3390/math10142452
View in Google Scholar

Varetto, F. (1998). Genetic algorithms applications in the analysis of insolvency risk. Journal of Banking & Finance, 22(10-11), 1421?1439. doi: 10.1016/S0378-4266(98)0 0059-4.

DOI: https://doi.org/10.1016/S0378-4266(98)00059-4
View in Google Scholar

Verma, D., & Raju, M. S. S. (2021). A comparative study of default prediction mod-els. Pacific Business Review International, 13(8), 143?154.
View in Google Scholar

Virag, M., & Kristof, T. (2005). Neural networks in bankruptcy prediction-A com-parative study on the basis of the first Hungarian bankruptcy model. Acta Oeconomica, 55(4), 403?426.

DOI: https://doi.org/10.1556/aoecon.55.2005.4.2
View in Google Scholar

Virag, M., & Nyitrai, T. (2013). Application of support vector machines on the basis of the first Hungarian bankruptcy model. Society and Economy, 35(2), 227?248. doi: 10.1556/SocEc.35.2013.2.6.

DOI: https://doi.org/10.1556/SocEc.35.2013.2.6
View in Google Scholar

Vochozka, M., Strakova, J., & Vachal, J. (2015). Model to predict survival of trans-portation and shipping companies. Nase More, 62(3), 109?113. doi: 10.17818/NM /2015/SI4.

DOI: https://doi.org/10.17818/NM/2015/SI4
View in Google Scholar

Voda, A. D., Dobrota, G., Tirca, D. M., Dumitrascu, D. D., & Dobrota, D. (2021). Corporate bankruptcy and insolvency prediction model. Technological and Economic Development of Economy, 27(5), 1039?1056. doi: 10.3846/tede.2021.15106.

DOI: https://doi.org/10.3846/tede.2021.15106
View in Google Scholar

Wang, B. (2004). Strategy changes and internet firm survival. University of Minnesota.
View in Google Scholar

Ward, T. J. (1994). An empirical study of the incremental predictive ability of Bea-ver's naive operating flow measure using four?state ordinal models of finan-cial distress. Journal of Business Finance & Accounting, 21(4), 547?561. doi: 10.1111/j.14 68-5957.1994.tb00335.x.

DOI: https://doi.org/10.1111/j.1468-5957.1994.tb00335.x
View in Google Scholar

Wedzki, D. (2000). The problem of using the ratio analysis to predict the bank-ruptcy of Polish enterprises-Case study. Bank i Kredyt, 5, 54?61.
View in Google Scholar

Wertheim, P., & Lynn, M. L. (1993). Development of a prediction model for hospi-tal closure using financial accounting data. Decision Sciences, 24(3), 529?546. doi: 10.1111/j.1540-5915.1993.tb01292.x.

DOI: https://doi.org/10.1111/j.1540-5915.1993.tb01292.x
View in Google Scholar

Wieprow, J., & Gawlik, A. (2021). The use of discriminant analysis to assess the risk of bankruptcy of enterprises in crisis conditions using the example of the tourism sector in Poland. Risks, 9(4), 78. doi: 10.3390/risks9040078.

DOI: https://doi.org/10.3390/risks9040078
View in Google Scholar

Zavgren, C. V. (1985). Assessing the vulnerability to failure of American industri-al firms: A logistic analysis. Journal of Business Finance & Accounting, 12(1), 19?45. doi: 10.1111/j.1468-5957.1985.tb00077.x.

DOI: https://doi.org/10.1111/j.1468-5957.1985.tb00077.x
View in Google Scholar

Zmijewski, M. E. (1984) Methodological issues related to the estimation of finan-cial distress prediction models. Journal of Accounting Research, 22, 59?82. doi: 10.2307 /2490859.

DOI: https://doi.org/10.2307/2490859
View in Google Scholar

Zvarikova, K., Spuchlakova, E., & Sopkova, G. (2017). International comparison of the relevant variables in the chosen bankruptcy models used in the risk man-agement. Oeconomia Copernicana, 8(1), 145?157. doi: 10.24136/oc.v8i1.10.

DOI: https://doi.org/10.24136/oc.v8i1.10
View in Google Scholar

Downloads

Published

2023-03-25

How to Cite

Valaskova, K., Gajdosikova, D., & Belas, J. (2023). Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries. Oeconomia Copernicana, 14(1), 253–293. https://doi.org/10.24136/oc.2023.007

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.