The economics of deep and machine learning-based algorithms for COVID-19 prediction, detection, and diagnosis shaping the organizational management of hospitals

Authors

DOI:

https://doi.org/10.24136/oc.2984

Keywords:

deep and machine learning, COVID 19, prediction, detection, diagnosis, organizational management, hospital

Abstract

Research background: Deep and machine learning-based algorithms can assist in COVID-19 image-based medical diagnosis and symptom tracing, optimize intensive care unit admission, and use clinical data to determine patient prioritization and mortality risk, being pivotal in qualitative care provision, reducing medical errors, and increasing patient survival rates, thus diminishing the massive healthcare system burden in relation to severe COVID-19 inpatient stay duration, while increasing operational costs throughout the organizational management of hospitals. Data-driven financial and scenario-based contingency planning, predictive modelling tools, and risk pooling mechanisms should be deployed for additional medical equipment and unforeseen healthcare demand expenses.

Purpose of the article: We show that deep and machine learning-based and clinical decision making systems can optimize patient survival likelihood and treatment outcomes with regard to susceptible, infected, and recovered individuals, performing accurate analyses by data modeling based on vital and clinical signs, surveillance data, and infection-related biomarkers, and furthering hospital facility optimization in terms of intensive care unit bed allocation.

Methods: The review software systems employed for article screening and quality evaluation were: AMSTAR, AXIS, DistillerSR, Eppi-Reviewer, MMAT, PICO Portal, Rayyan, ROBIS, and SRDR.

Findings & value added: Deep and machine learning-based clinical decision support tools can forecast COVID-19 spread, confirmed cases, and infection and mortality rates for data-driven appropriate treatment and resource allocations in effective therapeutic and diagnosis protocol development, by determining suitable measures and regulations and by using symptoms and comorbidities, vital signs, clinical and laboratory data and medical records across intensive care units, impacting the healthcare financing infrastructure. As a result of heightened use of personal protective equipment, hospital pharmacy and medication, outpatient treatment, and medical supplies, revenue loss and financial vulnerability occur, also due to expenses related to hiring additional staff and to critical resource expenditures. Hospital costs for COVID-19 medical care, screening, treatment capacity expansion, and personal protective equipment can lead to further financial losses while affecting COVID-19 frontline hospital workers and patients.

Downloads

Download data is not yet available.

References

Abdul Salam, M., Taha, S., & Ramadan, M. (2021). COVID-19 detection using federated machine learning. PLOS ONE, 16(6), e0252573.
View in Google Scholar

Aktar, S., Ahamad, M. M., Rashed-Al-Mahfuz, M., Azad, A. K. M., Uddin, S., Kamal, A. H. M., Alyami, S. A., Lin, P., Islam, S. M. S., Quinn, J. M., Eapen, V., & Moni, M. A. (2021). Machine learning approach to predicting COVID-19 disease severity based on clinical blood test data: Statistical analysis and model development. JMIR Medical Informatics, 9(4), e25884.
View in Google Scholar

Akter, S., Shamrat, F. M. J. M., Chakraborty, S., Karim, A., & Azam, S. (2021). COVID-19 detection using deep learning algorithm on chest X-ray images. Biology, 10, 1174.
View in Google Scholar

Alassafi, M. O., Jarrah, M., & Alotaibi, R. (2022). Time series predicting of COVID-19 based on deep learning. Neurocomputing, 468, 335‒344.
View in Google Scholar

Alballa, N., & Al-Turaiki, I. (2021). Machine learning approaches in COVID-19 diagnosis, mortality, and severity risk prediction: A review. Informatics in Medicine Unlocked, 24, 100564.
View in Google Scholar

Alakus, T. B., & Turkoglu, I. (2020). Comparison of deep learning approaches to predict COVID-19 infection. Chaos, Solitons & Fractals, 140, 110120. https://doi. org/10.1016/j.chaos. 2020.110120.
View in Google Scholar

Alali, Y., Harrou, F., & Sun, Y. (2022). A proficient approach to forecast COVID-19 spread via optimized dynamic machine learning models. Scientific Reports, 12, 2467.
View in Google Scholar

Alotaibi, A., Shiblee, M., & Alshahrani, A. (2021). Prediction of severity of COVID-19-infected patients using machine learning techniques. Computers, 10, 31.
View in Google Scholar

Al Shehri, W., Almalki, J., Mehmood, R., Alsaif, K., Alshahrani, S. M., Jannah, N., & Alangari, S. (2022). A novel COVID-19 detection technique using deep learning based approaches. Sustainability, 14, 12222.
View in Google Scholar

Andrade, E. C. d., Pinheiro, P. R., Barros, A. L. B. d. P., Nunes, L. C., Pinheiro, L. I. C. C., Pinheiro, P. G. C. D., & Holanda Filho, R. (2022). Towards machine learning algorithms in predicting the clinical evolution of patients diagnosed with COVID-19. Applied Sciences, 12, 8939.
View in Google Scholar

Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., Rabczuk, T., & Atkinson, P. M. (2020). COVID-19 outbreak prediction with machine learning. Algorithms, 13, 249.
View in Google Scholar

Arpaci, I., Huang, S., Al-Emran, M., Al-Kabi, M. N., & Peng, M. (2021). Predicting the COVID-19 infection with fourteen clinical features using machine learning classification algorithms. Multimedia Tools and Applications, 80, 11943–11957.
View in Google Scholar

Arvind, V., Kim, J. S., Cho, B. H., Geng, E., & Cho, S. K. (2021). Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19. Journal of Critical Care, 62, 25–30.
View in Google Scholar

Aslani, S., & Jacob, J. (2023). Utilisation of deep learning for COVID-19 diagnosis. Clinical Radiology, 78(2), 150–157.
View in Google Scholar

Assaf, D., Gutman, Y., Neuman, Y., Segal, G., Amit, S., Gefen-Halevi, S., Shilo, N., Epstein, A., Mor-Cohen, R., Biber, A., Rahav, G., Levy, I., & Tirosh, A. (2020). Utilization of machine-learning models to accurately predict the risk for critical COVID-19. Internal and Emergency Medicine, 15, 1435–1443.
View in Google Scholar

Babukarthik, R. G., Adiga, V. A. K., Sambasivam, G., Chandramohan, D., & Amudhavel, J. (2020). Prediction of COVID-19 using Genetic Deep Learning Convolutional Neural Network (GDCNN). IEEE Access, 8, 177647–177666.
View in Google Scholar

Burdick, H., Lam, C., Mataraso, S., Siefkas, A., Braden, G., Phillip Dellinger, R., McCoy, A., Vincent, J.-L., Green-Saxena, A., Barnes, G., Hoffman, J., Calvert, J., Pellegrini, E., & Das, R. (2020). Prediction of respiratory decompensation in Covid-19 patients using machine learning: The READY trial. Computers in Biology and Medicine, 124, 103949.
View in Google Scholar

Cobre, A. F., Stremel, D. P., Noleto, G. R., Fachi, M. M., Surek, M., Wiens, A., Tonin, F. S., & Pontarolo, R. (2021). Diagnosis and prediction of COVID-19 severity: Can biochemical tests and machine learning be used as prognostic indicators? Computers in Biology and Medicine, 134, 104531.
View in Google Scholar

Das, A. K., Mishra, S., & Saraswathy Gopalan, S. (2020). Predicting CoVID-19 community mortality risk using machine learning and development of an online prognostic tool. PeerJ, 8, e10083.
View in Google Scholar

Desai, S. B., Pareek, A., & Lungren, M. P. (2020). Deep learning and its role in COVID-19 medical imaging. Intelligence-Based Medicine, 3–4, 100013.
View in Google Scholar

Devaraj, J., Elavarasan, R. M., Pugazhendhi, R., Shafiullah, G. M., Ganesan, S., Jeysree, A. K., Khan, I. A., & Hossain, E. (2021). Forecasting of COVID-19 cases using deep learning models: Is it reliable and practically significant? Results in Physics, 21, 103817.
View in Google Scholar

Ebinger, J., Wells, M., Ouyang, D., Davis, T., Kaufman, N., Cheng, S., & Chugh, S. (2021). A machine learning algorithm predicts duration of hospitalization in COVID-19 patients. Intelligence-Based Medicine, 5, 100035.
View in Google Scholar

Elham, J., Amirhossein, A., Nader, T., Alireza, Z., Soroush, S., Hadi, E., Jamaldini, S. H., Daaee, A., Babajani, A., Kashi, M. A. S., Jamshidi, M., Rahi, S. J., & Mansouri, N. (2022). Using machine learning to predict mortality for COVID-19 patients on day 0 in the ICU. Frontiers in Digital Health, 3, 681608.
View in Google Scholar

Elhazmi, A., Al-Omari, A., Sallam, H., Mufti, H. N., Rabie, A. A., Alshahrani, M., Mady, A., Alghamdi, A., Altalaq, A., Azzam, M. H., Sindi, A., Kharaba, A., Al-Aseri, Z. A., Almekhlafi, G. A., Tashkandi, W., Alajmi, S. A., Faqihi, F., Alharthy, A., Al-Tawfiq, J. A., Melibari, R. G., Al-Hazzani, W., & Arabi, Y. M. (2022). Machine learning decision tree algorithm role for predicting mortality in critically ill adult COVID-19 patients admitted to the ICU. Journal of Infection and Public Health, 15(7), 826–834.
View in Google Scholar

Fang, C., Bai, S., Chen, Q., Zhou, Y., Xia, L., Qin, L., Gong, S., Xie, X., Zhou, C., Tu, D., Zhang, C., Liu, X., Chen, W., Bai, X., & Torr, P. H. S. (2021). Deep learning for predicting COVID-19 malignant progression. Medical Image Analysis, 72, 102096.
View in Google Scholar

Fernandes, F. T., de Oliveira, T. A., Teixeira, C. E., de Moraes Batista, A. F., Costa, G. D., & Filho, A. D. P. C. (2021). A multipurpose machine learning approach to predict COVID-19 negative prognosis in São Paulo, Brazil. Scientific Reports, 11, 3343.
View in Google Scholar

Goodman-Meza, D., Rudas, A., Chiang, J. N., Adamson, P. C., Ebinger, J., Sun, N., Botting, P., Fulcher, J. A., Saab, F. G., Brook, R., Eskin, E., An, U., Kordi, M., Jew, B., Balliu, B., Chen, Z., Hill, B. L., Rahmani, E., Halperin, E., & Manuel, V. (2020). A machine learning algorithm to increase COVID-19 inpatient diagnostic capacity. PLoS ONE, 15(9), e0239474.
View in Google Scholar

Gothai, E., Thamilselvan, R., Rajalaxmi, R. R., Sadana, R. M., Ragavi, A., & Sakthivel, R. (2023). Prediction of COVID-19 growth and trend using machine learning approach. Materials Today: Proceedings, 81(2), 597–601.
View in Google Scholar

Halasz, G., Sperti, M., Villani, M., Michelucci, U., Agostoni, P., Biagi, A., Rossi, L., Botti, A., Mari, C., Maccarini, M., Pura, F., Roveda, L., Nardecchia, A., Mottola, E., Nolli, M., Salvioni, E., Mapelli, M., Deriu, M. A., Piga, D., & Piepoli M. (2021). A machine learning approach for mortality prediction in COVID-19 pneumonia: Development and evaluation of the Piacenza Score. Journal of Medical Internet Research, 23(5), e29058.
View in Google Scholar

Ikemura, K., Bellin, E., Yagi, Y., Billett, H., Saada, M., Simone, K., Stahl, L., Szymanski, J., Goldstein, D. Y., & Reyes Gil, M. (2021). Using automated machine learning to predict the mortality of patients with COVID-19: Prediction model development study. Journal of Medical Internet Research, 23(2), e23458.
View in Google Scholar

Iwendi, C., Huescas, C. G. Y., Chakraborty, C., & Mohan, S. (2022). COVID-19 health analysis and prediction using machine learning algorithms for Mexico and Brazil patients. Journal of Experimental & Theoretical Artificial Intelligence.
View in Google Scholar

Jamshidi, M., Lalbakhsh, A., Talla, J., Peroutka, Z., Hadjilooei, F., Lalbakhsh, P., Jamshidi, M., La Spada, L., Mirmozafari, M., Dehghani, M., Sabet, A., Roshani, S., Roshani, S., Bayat-Makou, N., Mohamadzade, B., Malek, Z., Jamshidi, A., Kiani, S., Hashemi-Dezaki, H., & Mohyuddin, W. (2020). Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access, 8, 109581–109595.
View in Google Scholar

Kallel, A., Rekik, M., & Khemakhem, M. (2022). Hybrid-based framework for COVID-19 prediction via federated machine learning models. Journal of Supercomputing, 78, 7078–7105.
View in Google Scholar

Kar, S., Chawla, R., Haranath, S. P., Ramasubban, S., Ramakrishnan, N., Vaishya, R., Sibal, A., & Reddy, S. (2021). Multivariable mortality risk prediction using machine learning for COVID-19 patients at admission (AICOVID). Scientific Reports, 11, 12801.
View in Google Scholar

Kwekha-Rashid, A. S., Abduljabbar, H. N., & Alhayani, B. (2023). Coronavirus disease (COVID-19) cases analysis using machine-learning applications. Applied Nanoscience, 13, 2013–2025.
View in Google Scholar

Laatifi, M., Douzi, S., Bouklouz, A., Ezzine, H., Jaafari, J., Zaid, Y., El Ouahidi, B., & Naciri, M. (2022). Machine learning approaches in Covid-19 severity risk prediction in Morocco. Journal of Big Data, 9, 5.
View in Google Scholar

Lalmuanawma, S., Hussain, J., & Chhakchhuak, L. (2020). Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review. Chaos, Solitons & Fractals, 139, 110059.
View in Google Scholar

Li, X., Ge, P., Zhu, J., Li, H., Graham, J., Singer, A., Richman, P. S., & Duong, T. Q. (2020). Deep learning prediction of likelihood of ICU admission and mortality in COVID-19 patients using clinical variables. PeerJ, 8, e10337.
View in Google Scholar

Majhi, R., Thangeda, R., Sugasi, R. P., & Kumar N. (2021). Analysis and prediction of COVID-19 trajectory: A machine learning approach. Journal of Public Affairs, 21(4), e2537.
View in Google Scholar

Malki, Z., Atlam, E. S., Hassanien, A. E., Dagnew, G., Elhosseini, M. A., & Gad, I. (2020). Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches. Chaos, Solitons & Fractals, 138, 110137.
View in Google Scholar

Malki, Z., Atlam, E. S., Ewis, A., Dagnew, G., Ghoneim, O. A., Mohamed, A. A., Abdel-Daim, M. M., & Gad, I. (2021). The COVID-19 pandemic: Prediction study based on machine learning models. Environmental Science and Pollution Research, 28, 40496–40506.
View in Google Scholar

Meraihi, Y., Gabis, A. B., Mirjalili, S., Ramdane-Cherif, A., & Alsaadi, F. E. (2022). Machine learning-based research for COVID-19 detection, diagnosis, and prediction: A survey. SN Computer Science, 3, 286.
View in Google Scholar

Mohan, S., John, A., Abugabah, A., Adimoolam, M., Kumar Singh, S., Kashif Bashir, A., & Sanzogni, L. (2022). An approach to forecast impact of Covid-19 using supervised machine learning model. Software: Practice and Experience, 52(4), 824–840.
View in Google Scholar

Moulaei, K., Shanbehzadeh, M., Mohammadi-Taghiabad, Z., & Kazemi-Arpanahi, H. (2022). Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Medical Informatics and Decision Making, 22, 2.
View in Google Scholar

Muhammad, L. J., Algehyne, E. A., Usman, S. S., Ahmad, A., Chakraborty, C., & Mohammed, I. A. (2021). Supervised machine learning models for prediction of COVID-19 infection using epidemiology dataset. SN Computer Science, 2, 11.
View in Google Scholar

Naeem, M., Yu, J., Aamir, M., Khan, S. A., Adeleye, O., & Khan, Z. (2021). Comparative analysis of machine learning approaches to analyze and predict the COVID-19 outbreak. PeerJ Computer Science, 7, e746.
View in Google Scholar

Nassif, A. B., Shahin, I., Bader, M., Hassan, A., & Werghi, N. (2022). COVID-19 detection systems using deep-learning algorithms based on speech and image data. Mathematics, 10, 564.
View in Google Scholar

Nemati, M., Ansary, J., & Nemati, N. (2020). Machine-learning approaches in COVID-19 survival analysis and discharge-time likelihood prediction using clinical data. Patterns, 1(5), 100074.
View in Google Scholar

Ning, W., Lei, S., Yang, J., Cao, Y., Jiang, P., Yang, Q., Zhang, J., Wang, X., Chen, F., Geng, Z., Xiong, L., Zhou, H., Guo, Y., Zeng, Y., Shi, H., Wang, L., Xue, Y., & Wang, Z. (2020). Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nature Biomedical Engineering, 4, 1197–1207.
View in Google Scholar

Pan, P., Li, Y., Xiao, Y., Han, B., Su, L., Su, M., Li, Y., Zhang, S., Jiang, D., Chen, X., Zhou, F., Ma, L., Bao, P., Xie, L. (2020). Prognostic assessment of COVID-19 in the intensive care unit by machine learning methods: Model development and validation. Journal of Medical Internet Research, 22(11), e23128.
View in Google Scholar

Patel, D., Kher, V., Desai, B., Lei, X., Cen, S., Nanda, N., Gholamrezanezhad, A., Duddalwar, V., Varghese, B., & Oberai, A. A. (2021). Machine learning based predictors for COVID-19 disease severity. Scientific Reports, 11, 4673.
View in Google Scholar

Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., & Gloaguen, R. (2020). COVID-19 pandemic prediction for Hungary; A hybrid machine learning approach. Mathematics, 8, 890.
View in Google Scholar

Pourhomayoun, M., & Shakibi, M. (2021). Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making. Smart Health, 20, 100178.
View in Google Scholar

Quiroz-Juárez, M. A., Torres-Gómez, A., Hoyo-Ulloa, I., León-Montiel, R. D. J., & U’Ren, A. B. (2021). Identification of high-risk COVID-19 patients using machine learning. PLOS ONE, 16(9), e0257234.
View in Google Scholar

Rahimi, I., Chen, F., & Gandomi, A. H. (2023). A review on COVID-19 forecasting models. Neural Computing and Applications, 35, 23671–23681.
View in Google Scholar

Rahimi, I., Gandomi, A. H., Asteris, P. G., & Chen, F. (2021). Analysis and prediction of COVID-19 using SIR, SEIQR, and machine learning models: Australia, Italy, and UK cases. Information, 12, 109.
View in Google Scholar

Rahman, M. M., Islam, M. M., Manik, M. M. H., Islam, M. R., & Al-Rakhami, M. S. (2021). Machine learning approaches for tackling novel coronavirus (COVID-19) pandemic. SN Computer Science, 2, 384.
View in Google Scholar

Rustam, F., Reshi, A. A., Mehmood, A., Ullah, S., On, B.-W., Aslam, A., & Choi, G. S. (2020). COVID-19 future forecasting using supervised machine learning models. IEEE Access, 8, 101489–101499.
View in Google Scholar

Saba, T., Abunadi, I., Shahzad, M. N., & Khan, A. R. (2021). Machine learning techniques to detect and forecast the daily total COVID-19 infected and deaths cases under different lockdown types. Microscopy Research and Technique, 84(7), 1462–1474. https://doi.org/ 10.1002/jemt.23702.
View in Google Scholar

Satu, M. S., Howlader, K. C., Mahmud, M., Kaiser, M. S., Shariful Islam, S. M., Quinn, J. M. W., Alyami, S. A., & Moni, M. A. (2021). Short-term prediction of COVID-19 cases using machine learning models. Applied Sciences, 11, 4266.
View in Google Scholar

Sayed, S. A.-F., Elkorany, A. M., & Sayed Mohammad, S. (2021). Applying different machine learning techniques for prediction of COVID-19 severity. IEEE Access, 9, 135697–135707.
View in Google Scholar

Shahin, O. R., Alshammari, H. H., Taloba, A. I., & El-Aziz, R. M. A. (2022). Machine learning approach for autonomous detection and classification of COVID-19 virus. Computers and Electrical Engineering, 101, 108055.
View in Google Scholar

Solayman, S., Aumi, S. A., Mery, C. S., Mubassir, M., & Khan, R. (2023). Automatic COVID-19 prediction using explainable machine learning techniques. International Journal of Cognitive Computing in Engineering, 4, 36–46.
View in Google Scholar

Su, X., Sun, Y., Liu, H., Lang, Q., Zhang, Y., Zhang, J., Wang, C., & Chen, Y. (2023). An innovative ensemble model based on deep learning for predicting COVID-19 infection. Scientific Reports, 13, 12322.
View in Google Scholar

Subudhi, S., Verma, A., Patel, A. B., Hardin, C. C., Khandekar, M. J., Lee, H., McEvoy, D., Stylianopoulos, T., Munn, L. L., Dutta, S., & Jain, R. K. (2021). Comparing machine learning algorithms for predicting ICU admission and mortality in COVID-19. npj Digital Medicine, 4, 87.
View in Google Scholar

Tiwari, S., Chanak, P., & Singh, S. K. (2022). A review of the machine learning algorithms for Covid-19 case analysis. IEEE Transactions on Artificial Intelligence, 4(1), 44–59.
View in Google Scholar

Tuli, S., Tuli, S., Tuli, R., & Gill, S. S. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things, 11, 100222.
View in Google Scholar

Ustebay, S., Sarmis, A., Kaya, G. K., & Sujan, M. (2023). A comparison of machine learning algorithms in predicting COVID-19 prognostics. Internal and Emergency Medicine, 18, 229–239.
View in Google Scholar

Vepa, A., Saleem, A., Rakhshan, K., Daneshkhah, A., Sedighi, T., Shohaimi, S., Omar, A., Salari, N., Chatrabgoun, O., Dharmaraj, D., Sami, J., Parekh, S., Ibrahim, M., Raza, M., Kapila, P., & Chakrabarti, P. (2021). Using machine learning algorithms to develop a clinical decision-making tool for COVID-19 inpatients. International Journal of Environmental Research and Public Health, 18, 6228.
View in Google Scholar

Verma, H., Mandal, S., & Gupta, A. (2022). Temporal deep learning architecture for prediction of COVID-19 cases in India. Expert Systems with Applications, 195, 116611.
View in Google Scholar

Villavicencio, C. N., Macrohon, J. J. E., Inbaraj, X. A., Jeng, J.-H., & Hsieh, J.-G. (2021). COVID-19 Prediction applyin supervised machine learning algorithms with comparative analysis using WEKA. Algorithms, 14, 201.
View in Google Scholar

Xu, W., Sun, N.-N., Gao, H.-N., Chen, Z.-Y., Yang, Y., Ju, B., & Tang, L.-L. (2021). Risk factors analysis of COVID-19 patients with ARDS and prediction based on machine learning. Scientific Reports, 11, 2933.
View in Google Scholar

Yeşilkanat, C. M. (2020). Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm. Chaos, Solitons & Fractals, 140, 110210.
View in Google Scholar

Yu, L., Halalau, A., Dalal, B., Abbas, A. E., Ivascu, F., Amin, M., & Nair, G. B. (2021). Machine learning methods to predict mechanical ventilation and mortality in patients with COVID-19. PLOS ONE, 16(4), e0249285.
View in Google Scholar

Zeroual, A., Harrou, F., Dairi, A., & Sun, Y. (2020). Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study. Chaos, Solitons & Fractals, 140, 110121.
View in Google Scholar

Zhang, X., Lu, S., Wang, S.-H., Yu, X., Wang, S.-J., Yao, L., Pan, Y., & Zhang, Y.-D. (2022). Diagnosis of COVID-19 pneumonia via a novel deep learning architecture. Journal of Computer Science and Technology, 37, 330–343.
View in Google Scholar

Zivkovic, M., Bacanin, N., Venkatachalam, K., Nayyar, A., Djordjevic, A., Strumberger, I., & Al-Turjman, F. (2021). COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustainable Cities and Society, 66, 102669.
View in Google Scholar

Zoabi, Y., Deri-Rozov, S., & Shomron, N. (2021). Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj Digital Medicine, 4, 3.
View in Google Scholar

Downloads

Published

30-03-2024

Issue

Section

Collective Writing

How to Cite

Lăzăroiu, G., Gedeon, T., Rogalska, E., Andronie, M., Frajtova Michalikova, K., Musova, Z., Iatagan, M., Uță, C., Michalkova, L., Kovacova, M., Ștefănescu, R., Hurloiu, I., Zabojnik, S., Stefko, R., Dijmărescu, A., Dijmărescu, I., & Geamănu, M. (2024). The economics of deep and machine learning-based algorithms for COVID-19 prediction, detection, and diagnosis shaping the organizational management of hospitals. Oeconomia Copernicana, 15(1), 27-58. https://doi.org/10.24136/oc.2984

Similar Articles

81-90 of 157

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >>